Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28722655
PubMed Central
PMC5601999
DOI
10.7554/elife.28985
PII: e28985
Knihovny.cz E-zdroje
- Klíčová slova
- Fibroblast Growth Factor 2, Unconventional protein secretion, biochemistry, biophysics, human, oligomerization, phosphoinositide, protein translocation across membranes, reconstitution with purified components, structural biology,
- MeSH
- fibroblastový růstový faktor 2 metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- heparitinsulfát metabolismus MeSH
- membránové transportní proteiny metabolismus MeSH
- multimerizace proteinu * MeSH
- sekreční vezikuly metabolismus MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibroblastový růstový faktor 2 MeSH
- fosfatidylinositol-4,5-difosfát MeSH
- heparitinsulfát MeSH
- membránové transportní proteiny MeSH
FGF2 is secreted from cells by an unconventional secretory pathway. This process is mediated by direct translocation across the plasma membrane. Here, we define the minimal molecular machinery required for FGF2 membrane translocation in a fully reconstituted inside-out vesicle system. FGF2 membrane translocation is thermodynamically driven by PI(4,5)P2-induced membrane insertion of FGF2 oligomers. The latter serve as dynamic translocation intermediates of FGF2 with a subunit number in the range of 8-12 FGF2 molecules. Vectorial translocation of FGF2 across the membrane is governed by sequential and mutually exclusive interactions with PI(4,5)P2 and heparan sulfates on opposing sides of the membrane. Based on atomistic molecular dynamics simulations, we propose a mechanism that drives PI(4,5)P2 dependent oligomerization of FGF2. Our combined findings establish a novel type of self-sustained protein translocation across membranes revealing the molecular basis of the unconventional secretory pathway of FGF2.
Department of Physics Tampere University of Technology Tampere Finland
Department of Physics University of Helsinki Helsinki Finland
Deutsches Zentrum fur Diabetesforschung Neuherberg Germany
Heidelberg University Biochemistry Center Heidelberg Germany
Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
MEMPHYS Center for Biomembrane Physics University of Southern Denmark Denmark United Kingdom
Zobrazit více v PubMed
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gliksman M, Goy A, Suh KS. Molecular and clinical significance of fibroblast growth factor 2 (FGF2 /bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 2016;7:44735–44762. doi: 10.18632/oncotarget.8203. PubMed DOI PMC
Benda A, Beneš M, Marecek V, Lhotský A, Hermens WT, Hof M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126. doi: 10.1021/la0270136. DOI
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC
Bikfalvi A, Klein S, Pintucci G, Rifkin DB. Biological roles of fibroblast growth factor-2. Endocrine Reviews. 1997;18:26–45. doi: 10.1210/er.18.1.26. PubMed DOI
Bucki R, Giraud F, Sulpice JC. Phosphatidylinositol 4,5-bisphosphate domain inducers promote phospholipid transverse redistribution in biological membranes. Biochemistry. 2000;39:5838–5844. doi: 10.1021/bi992403l. PubMed DOI
Darden T, York D, Pedersen L. Particle mesh ewald: An N ⋅log( N ) method for ewald sums in large systems. The Journal of Chemical Physics. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Peptide folding: when Simulation meets experiment. Angewandte Chemie International Edition. 1999;38:236–240. doi: 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M. DOI
Debaisieux S, Rayne F, Yezid H, Beaumelle B. The ins and outs of HIV-1 tat. Traffic. 2012;13:355–363. doi: 10.1111/j.1600-0854.2011.01286.x. PubMed DOI
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535:111–116. doi: 10.1038/nature18590. PubMed DOI
Ebert AD, Laussmann M, Wegehingel S, Kaderali L, Erfle H, Reichert J, Lechner J, Beer HD, Pepperkok R, Nickel W. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic. 2010;11:813–826. doi: 10.1111/j.1600-0854.2010.01059.x. PubMed DOI
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh ewald method. The Journal of Chemical Physics. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996;271:1116–1120. doi: 10.1126/science.271.5252.1116. PubMed DOI
García-Sáez AJ, Ries J, Orzáez M, Pérez-Payà E, Schwille P. Membrane promotes tBID interaction with BCL(XL) Nature Structural & Molecular Biology. 2009;16:1178–1185. doi: 10.1038/nsmb.1671. PubMed DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Physical Review A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Kastrup JS, Eriksson ES, Dalbøge H, Flodgaard H. X-ray structure of the 154-amino-acid form of recombinant human basic fibroblast growth factor. comparison with the truncated 146-amino-acid form. Acta Crystallographica Section D Biological Crystallography. 1997;53:160–168. doi: 10.1107/S0907444996012711. PubMed DOI
Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The Journal of Physical Chemistry B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
La Venuta G, Zeitler M, Steringer JP, Müller HM, Nickel W. The startling Properties of fibroblast growth factor 2: how to exit mammalian cells without a signal peptide at hand. Journal of Biological Chemistry. 2015;290:27015–27020. doi: 10.1074/jbc.R115.689257. PubMed DOI PMC
La Venuta G, Wegehingel S, Sehr P, Müller HM, Dimou E, Steringer JP, Grotwinkel M, Hentze N, Mayer MP, Will DW, Uhrig U, Lewis JD, Nickel W. Small Molecule inhibitors targeting tec kinase Block Unconventional secretion of fibroblast growth factor 2. Journal of Biological Chemistry. 2016;291:17787–17803. doi: 10.1074/jbc.M116.729384. PubMed DOI PMC
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Lemmon MA. Phosphoinositide recognition domains. Traffic. 2003;4:201–213. doi: 10.1034/j.1600-0854.2004.00071.x. PubMed DOI
Malhotra V. Unconventional protein secretion: an evolving mechanism. The EMBO Journal. 2013;32:1660–1664. doi: 10.1038/emboj.2013.104. PubMed DOI PMC
Martín-Sánchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, Spiller D, White M, Daniels MJ, Mortellaro A, Peñalver M, Paszek P, Steringer JP, Nickel W, Brough D, Pelegrín P. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death and Differentiation. 2016;23:1219–1231. doi: 10.1038/cdd.2015.176. PubMed DOI PMC
Milosevic I, Sørensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. Journal of Neuroscience. 2005;25:2557–2565. doi: 10.1523/JNEUROSCI.3761-04.2005. PubMed DOI PMC
Moy FJ, Seddon AP, Campbell EB, Böhlen P, Powers R. 1h, 15N, 13C and 13co assignments and secondary structure determination of basic fibroblast growth factor using 3D heteronuclear NMR spectroscopy. Journal of Biomolecular NMR. 1995;6:245–254. doi: 10.1007/BF00197806. PubMed DOI
Moy FJ, Seddon AP, Böhlen P, Powers R. High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry. 1996;35:13552–13561. doi: 10.1021/bi961260p. PubMed DOI
Müller HM, Steringer JP, Wegehingel S, Bleicken S, Münster M, Dimou E, Unger S, Weidmann G, Andreas H, García-Sáez AJ, Wild K, Sinning I, Nickel W. Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. Journal of Biological Chemistry. 2015;290:8925–8937. doi: 10.1074/jbc.M114.622456. PubMed DOI PMC
Nickel W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic. 2005;6:607–614. doi: 10.1111/j.1600-0854.2005.00302.x. PubMed DOI
Nickel W. Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. Journal of Cell Science. 2007;120:2295–2299. doi: 10.1242/jcs.011080. PubMed DOI
Nickel W, Seedorf M. Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annual Review of Cell and Developmental Biology. 2008;24:287–308. doi: 10.1146/annurev.cellbio.24.110707.175320. PubMed DOI
Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nature Reviews Molecular Cell Biology. 2009;10:148–155. doi: 10.1038/nrm2617. PubMed DOI
Nickel W. The unconventional secretory machinery of fibroblast growth factor 2. Traffic. 2011;12:799–805. doi: 10.1111/j.1600-0854.2011.01187.x. PubMed DOI
Noh KH, Kim SH, Kim JH, Song KH, Lee YH, Kang TH, Han HD, Sood AK, Ng J, Kim K, Sonn CH, Kumar V, Yee C, Lee KM, Kim TW. API5 confers tumoral immune escape through FGF2-dependent cell survival pathway. Cancer Research. 2014;74:3556–3566. doi: 10.1158/0008-5472.CAN-13-3225. PubMed DOI PMC
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, Bowen F, Parker PJ, Filonenko VV, Gout IT, Sebire N, Marais R, Downward J, Seckl MJ. FGF-2 protects small cell lung Cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. The EMBO Journal. 2006;25:3078–3088. doi: 10.1038/sj.emboj.7601198. PubMed DOI PMC
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Piccioli P, Rubartelli A. The secretion of IL-1β and options for release. Seminars in Immunology. 2013;25:425–429. doi: 10.1016/j.smim.2013.10.007. PubMed DOI
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine and Growth Factor Reviews. 2005;16:159–178. doi: 10.1016/j.cytogfr.2005.01.004. PubMed DOI
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. Journal of Cell Science. 2012;125:5251–5255. doi: 10.1242/jcs.103630. PubMed DOI
Rayne F, Debaisieux S, Bonhoure A, Beaumelle B. HIV-1 tat is unconventionally secreted through the plasma membrane. Cell Biology International. 2010a;34:409–413. doi: 10.1042/CBI20090376. PubMed DOI
Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K, Chazal N, Arold ST, Pugnière M, Sanchez F, Bonhoure A, Briant L, Loret E, Roy C, Beaumelle B. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 tat by infected T-cells. The EMBO Journal. 2010b;29:1348–1362. doi: 10.1038/emboj.2010.32. PubMed DOI PMC
Schäfer T, Zentgraf H, Zehe C, Brügger B, Bernhagen J, Nickel W. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. Journal of Biological Chemistry. 2004;279:6244–6251. doi: 10.1074/jbc.M310500200. PubMed DOI
Seelenmeyer C, Wegehingel S, Tews I, Künzler M, Aebi M, Nickel W. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. The Journal of Cell Biology. 2005;171:373–381. doi: 10.1083/jcb.200506026. PubMed DOI PMC
Steringer JP, Bleicken S, Andreas H, Zacherl S, Laussmann M, Temmerman K, Contreras FX, Bharat TA, Lechner J, Müller HM, Briggs JA, García-Sáez AJ, Nickel W. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. Journal of Biological Chemistry. 2012;287:27659–27669. doi: 10.1074/jbc.M112.381939. PubMed DOI PMC
Steringer JP, Müller HM, Nickel W. Unconventional secretion of fibroblast growth factor 2--a novel type of protein translocation across membranes? Journal of Molecular Biology. 2015;427:1202–1210. doi: 10.1016/j.jmb.2014.07.012. PubMed DOI
Temmerman K, Ebert AD, Müller HM, Sinning I, Tews I, Nickel W. A direct role for phosphatidylinositol-4,5-bisphosphate in unconventional secretion of fibroblast growth factor 2. Traffic. 2008;9:1204–1217. doi: 10.1111/j.1600-0854.2008.00749.x. PubMed DOI
Temmerman K, Nickel W. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. Journal of Lipid Research. 2009;50:1245–1254. doi: 10.1194/jlr.D800043-JLR200. PubMed DOI PMC
Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Structure, Function, and Bioinformatics. 2005;59:687–696. doi: 10.1002/prot.20449. PubMed DOI
Widengren J, Rigler R, Mets U. Triplet-state monitoring by fluorescence correlation spectroscopy. Journal of Fluorescence. 1994;4:255–258. doi: 10.1007/BF01878460. PubMed DOI
Young TS, Ahmad I, Yin JA, Schultz PG. An enhanced system for unnatural amino acid mutagenesis in E. coli. Journal of Molecular Biology. 2010;395:361–374. doi: 10.1016/j.jmb.2009.10.030. PubMed DOI
Zacherl S, La Venuta G, Müller HM, Wegehingel S, Dimou E, Sehr P, Lewis JD, Erfle H, Pepperkok R, Nickel W. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. Journal of Biological Chemistry. 2015;290:3654–3665. doi: 10.1074/jbc.M114.590067. PubMed DOI PMC
Zehe C, Engling A, Wegehingel S, Schäfer T, Nickel W. Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. PNAS. 2006;103:15479–15484. doi: 10.1073/pnas.0605997103. PubMed DOI PMC
Zeitler M, Steringer JP, Müller HM, Mayer MP, Nickel W. HIV-Tat protein forms Phosphoinositide-dependent membrane pores implicated in unconventional protein secretion. Journal of Biological Chemistry. 2015;290:21976–21984. doi: 10.1074/jbc.M115.667097. PubMed DOI PMC
Zhang M, Schekman R. Cell biology. unconventional secretion, unconventional solutions. Science. 2013;340:559–561. doi: 10.1126/science.1234740. PubMed DOI
Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2