Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2

. 2022 Nov 07 ; 221 (11) : . [epub] 20220929

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36173379

Grantová podpora
SFB/TRR 83 Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Max Planck Society
Sigrid Juselius Foundation
Academy of Finland
RGP0059/2019 Human Frontier Science Program
Helsinki Institute of Life Science
19-26854X Czech Science Foundation
INFRAIA-2016-1-730897 HPC-EUROPA3
H2020 Programme

FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.

Komentář v

PubMed

Zobrazit více v PubMed

Abraham, M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., and Lindahl E.. 2015. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1:19–25. 10.1016/j.softx.2015.06.001 DOI

Akl, M.R., Nagpal P., Ayoub N.M., Tai B., Prabhu S.A., Capac C.M., Gliksman M., Goy A., and Suh K.S.. 2016. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 7:44735–44762. 10.18632/oncotarget.8203 PubMed DOI PMC

Backhaus, R., Zehe C., Wegehingel S., Kehlenbach A., Schwappach B., and Nickel W.. 2004. Unconventional protein secretion: Membrane translocation of FGF-2 does not require protein unfolding. J. Cell Sci. 117:1727–1736. 10.1242/jcs.01027 PubMed DOI

Beenken, A., and Mohammadi M.. 2009. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8:235–253. 10.1038/nrd2792 PubMed DOI PMC

Bibette, J., Leal Calderon F., and Poulin P.. 1999. Emulsions: Basic principles. Rep. Prog. Phys. 62:969–1033. 10.1088/0034-4885/62/6/203 DOI

Bligh, E.G., and Dyer W.J.. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917. 10.1139/o59-099 PubMed DOI

Brugger, B. 2014. Lipidomics: Analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu. Rev. Biochem. 83:79–98. 10.1146/annurev-biochem-060713-035324 PubMed DOI

Cheng, J., Ohsaki Y., Tauchi-Sato K., Fujita A., and Fujimoto T.. 2006. Cholesterol depletion induces autophagy. Biochem. Biophys. Res. Commun. 351:246–252. 10.1016/j.bbrc.2006.10.042 PubMed DOI

Cunill-Semanat, E., and Salgado J.. 2019. Spontaneous and stress-induced pore formation in membranes: Theory, experiments and simulations. J. Membr. Biol. 252:241–260. 10.1007/s00232-019-00083-4 PubMed DOI

Darden, T., York D., and Pedersen L.. 1993. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092. 10.1063/1.464397 DOI

den Otter, W.K. 2009. Free energies of stable and metastable pores in lipid membranes under tension. J. Chem. Phys. 131:205101. 10.1063/1.3266839 PubMed DOI

Di Paolo, G., and De Camilli P.. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature. 443:651–657. 10.1038/nature05185 PubMed DOI

Dimou, E., Cosentino K., Platonova E., Ros U., Sadeghi M., Kashyap P., Katsinelos T., Wegehingel S., Noe F., Garcia-Saez A.J., et al. . 2019. Single event visualization of unconventional secretion of FGF2. J. Cell Biol. 218:683–699. 10.1083/jcb.201802008 PubMed DOI PMC

Dimou, E., and Nickel W.. 2018. Unconventional mechanisms of eukaryotic protein secretion. Curr. Biol. 28:R406–R410. 10.1016/j.cub.2017.11.074 PubMed DOI

Doktorova, M., Heberle F.A., Kingston R.L., Khelashvili G., Cuendet M.A., Wen Y., Katsaras J., Feigenson G.W., Vogt V.M., and Dick R.A.. 2017. Cholesterol promotes protein binding by affecting membrane electrostatics and solvation properties. Biophys. J. 113:2004–2015. 10.1016/j.bpj.2017.08.055 PubMed DOI PMC

Ebert, A.D., Laussmann M., Wegehingel S., Kaderali L., Erfle H., Reichert J., Lechner J., Beer H.D., Pepperkok R., and Nickel W.. 2010. Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic. 11:813–826. 10.1111/j.1600-0854.2010.01059.x PubMed DOI

Engling, A., Backhaus R., Stegmayer C., Zehe C., Seelenmeyer C., Kehlenbach A., Schwappach B., Wegehingel S., and Nickel W.. 2002. Biosynthetic FGF-2 is targeted to non-lipid raft microdomains following translocation to the extracellular surface of CHO cells. J. Cell Sci. 115:3619–3631. 10.1242/jcs.00036 PubMed DOI

Enkavi, G., Javanainen M., Kulig W., Rog T., and Vattulainen I.. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119:5607–5774. 10.1021/acs.chemrev.8b00538 PubMed DOI PMC

Ercan, B., Naito T., Koh D.H.Z., Dharmawan D., and Saheki Y.. 2021. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 40:e106524. 10.15252/embj.2020106524 PubMed DOI PMC

Evans, D.J., and Holian B.L.. 1985. The nose–hoover thermostat. J. Chem. Phys. 83:4096. 10.1063/1.449071 DOI

Evavold, C.L., Ruan J., Tan Y., Xia S., Wu H., and Kagan J.C.. 2017. The pore-forming protein Gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity. 48:35–44.e6. 10.1016/j.immuni.2017.11.013 PubMed DOI PMC

Ferguson, K.M., Lemmon M.A., Schlessinger J., and Sigler P.B.. 1995. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 83:1037–1046. 10.1016/0092-8674(95)90219-8 PubMed DOI

Guo, Y., Werner M., Seemann R., Baulin V.A., and Fleury J.B.. 2018. Tension-induced translocation of an ultrashort carbon nanotube through a phospholipid bilayer. ACS Nano. 12:12042–12049. 10.1021/acsnano.8b04657 PubMed DOI

Gurtovenko, A.A., and Vattulainen I.. 2005. pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: Atomistic molecular dynamics study. J. Am. Chem. Soc. 127:17570–17571. 10.1021/ja053129n PubMed DOI

Gurtovenko, A.A., and Vattulainen I.. 2009. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: Methodological issues. J. Chem. Phys. 130:215107. 10.1063/1.3148885 PubMed DOI

Hahl, H., Vargas J.N., Griffo A., Laaksonen P., Szilvay G., Lienemann M., Jacobs K., Seemann R., and Fleury J.B.. 2017. Pure protein bilayers and vesicles from native fungal hydrophobins. Adv. Mater. 29. 10.1002/adma.201602888 PubMed DOI

Hahl, H., Vargas J.N., Jung M., Griffo A., Laaksonen P., Lienemann M., Jacobs K., Seemann R., and Fleury J.B.. 2018. Adhesion properties of freestanding hydrophobin bilayers. Langmuir. 34:8542–8549. 10.1021/acs.langmuir.8b00575 PubMed DOI

Harayama, T., and Riezman H.. 2018. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19:281–296. 10.1038/nrm.2017.138 PubMed DOI

Huang, J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., and MacKerell A.D. Jr. 2017. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 14:71–73. 10.1038/nmeth.4067 PubMed DOI PMC

Ikonen, E. 2008. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9:125–138. 10.1038/nrm2336 PubMed DOI

Javanainen, M. 2014. Universal method for embedding proteins into complex lipid bilayers for molecular dynamics simulations. J. Chem. Theory Comput. 10:2577–2582. 10.1021/ct500046e PubMed DOI

Karal, M.A., Levadnyy V., and Yamazaki M.. 2016. Analysis of constant tension-induced rupture of lipid membranes using activation energy. Phys. Chem. Chem. Phys. 18:13487–13495. 10.1039/c6cp01184e PubMed DOI

Karal, M.A., and Yamazaki M.. 2015. Communication: Activation energy of tension-induced pore formation in lipid membranes. J. Chem. Phys. 143:081103. 10.1063/1.4930108 PubMed DOI

Kastrup, J.S., Eriksson E.S., Dalboge H., and Flodgaard H.. 1997. X-ray structure of the 154-amino-acid form of recombinant human basic fibroblast growth factor. comparison with the truncated 146-amino-acid form. Acta Crystallogr. D Biol. Crystallogr. 53:160–168. 10.1107/S0907444996012711 PubMed DOI

Katsinelos, T., Zeitler M., Dimou E., Karakatsani A., Muller H.M., Nachman E., Steringer J.P., Ruiz de Almodovar C., Nickel W., and Jahn T.R.. 2018. Unconventional secretion mediates the trans-cellular spreading of Tau. Cell Rep. 23:2039–2055. 10.1016/j.celrep.2018.04.056 PubMed DOI

Khangholi, N., Seemann R., and Fleury J.B.. 2020. Simultaneous measurement of surface and bilayer tension in a microfluidic chip. Biomicrofluidics. 14:024117. 10.1063/1.5137810 PubMed DOI PMC

Kotnik, T., Rems L., Tarek M., and Miklavcic D.. 2019. Membrane electroporation and electropermeabilization: Mechanisms and models. Annu. Rev. Biophys. 48:63–91. 10.1146/annurev-biophys-052118-115451 PubMed DOI

La Venuta, G., Wegehingel S., Sehr P., Muller H.M., Dimou E., Steringer J.P., Grotwinkel M., Hentze N., Mayer M.P., Will D.W., et al. . 2016. Small molecule inhibitors targeting tec kinase block unconventional secretion of fibroblast growth factor 2. J. Biol. Chem. 291:17787–17803. 10.1074/jbc.M116.729384 PubMed DOI PMC

La Venuta, G., Zeitler M., Steringer J.P., Müller H.M., and Nickel W.. 2015. The startling properties of fibroblast growth factor 2: How to exit mammalian cells without a signal peptide at hand. J. Biol. Chem. 290:27015–27020. 10.1074/jbc.R115.689257 PubMed DOI PMC

Lee, J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., et al. . 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12:405–413. 10.1021/acs.jctc.5b00935 PubMed DOI PMC

Legrand, C., Saleppico R., Sticht J., Lolicato F., Muller H.M., Wegehingel S., Dimou E., Steringer J.P., Ewers H., Vattulainen I., et al. . 2020. The Na, K-ATPase acts upstream of phosphoinositide PI(4, 5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Commun. Biol. 3:141. 10.1038/s42003-020-0871-y PubMed DOI PMC

Leonard, A., and Dufourc E.J.. 1991. Interactions of cholesterol with the membrane lipid matrix. A solid state NMR approach. Biochimie. 73:1295–1302. 10.1016/0300-9084(91)90092-f PubMed DOI

Liebisch, G., Binder M., Schifferer R., Langmann T., Schulz B., and Schmitz G.. 2006. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim. Biophys. Acta. 1761:121–128. 10.1016/j.bbalip.2005.12.007 PubMed DOI

Magarkar, A., Dhawan V., Kallinteri P., Viitala T., Elmowafy M., Rog T., and Bunker A.. 2014. Cholesterol level affects surface charge of lipid membranes in saline solution. Sci. Rep. 4:5005. 10.1038/srep05005 PubMed DOI PMC

Mahammad, S., and Parmryd I.. 2015. Cholesterol depletion using methyl-β-cyclodextrin. Methods Mol. Biol. 1232:91–102. 10.1007/978-1-4939-1752-5_8 PubMed DOI

Martin, T.F. 2015. PI(4, 5)P2-binding effector proteins for vesicle exocytosis. Biochim. Biophys. Acta. 1851:785–793. 10.1016/j.bbalip.2014.09.017 PubMed DOI PMC

Martin-Sanchez, F., Diamond C., Zeitler M., Gomez A.I., Baroja-Mazo A., Bagnall J., Spiller D., White M., Daniels M.J., Mortellaro A., et al. . 2016. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 23:1219–1231. 10.1038/cdd.2015.176 PubMed DOI PMC

Meng, Y., and Roux B.. 2015. Efficient determination of free energy landscapes in multiple dimensions from biased umbrella sampling simulations using linear regression. J. Chem. Theory Comput. 11:3523–3529. 10.1021/ct501130r PubMed DOI PMC

Merezhko, M., Brunello C.A., Yan X., Vihinen H., Jokitalo E., Uronen R.L., and Huttunen H.J.. 2018. Secretion of Tau via an unconventional non-vesicular mechanism. Cell Rep. 25:2027–2035.e4. 10.1016/j.celrep.2018.10.078 PubMed DOI

Merezhko, M., Uronen R.L., and Huttunen H.J.. 2020. The cell biology of Tau secretion. Front. Mol. Neurosci. 13:569818. 10.3389/fnmol.2020.569818 PubMed DOI PMC

Monteleone, M., Stanley A.C., Chen K.W., Brown D.L., Bezbradica J.S., von Pein J.B., Holley C.L., Boucher D., Shakespear M.R., Kapetanovic R., et al. . 2018. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24:1425–1433. 10.1016/j.celrep.2018.07.027 PubMed DOI

Müller, H.M., Steringer J.P., Wegehingel S., Bleicken S., Munster M., Dimou E., Unger S., Weidmann G., Andreas H., Garcia-Saez A.J., et al. . 2015. formation of disulfide bridges drives oligomerization, membrane pore formation and translocation of fibroblast growth factor 2 to cell surfaces. J. Biol. Chem. 290:8925–8937. 10.1074/jbc.M114.622456 PubMed DOI PMC

Needham, D., and Haydon D.A.. 1983. Tensions and free energies of formation of “solventless” lipid bilayers. Measurement of high contact angles. Biophys. J. 41:251–257. 10.1016/S0006-3495(83)84435-X PubMed DOI PMC

Ozbalci, C., Sachsenheimer T., and Brugger B.. 2013. Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. Methods Mol. Biol. 1033:3–20. 10.1007/978-1-62703-487-6_1 PubMed DOI

Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science. 189:347–358. 10.1126/science.1096303 PubMed DOI

Pallotta, M.T., and Nickel W.. 2020. FGF2 and IL-1β: Explorers of unconventional secretory pathways at a glance. J. Cell Sci. 133:jcs250449. 10.1242/jcs.250449 PubMed DOI

Parrinello, M., and Rahman A.. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52:7182–7190. 10.1063/1.328693 DOI

Posor, Y., Eichhorn-Grunig M., and Haucke V.. 2015. Phosphoinositides in endocytosis. Biochim. Biophys. Acta. 1851:794–804. 10.1016/j.bbalip.2014.09.014 PubMed DOI

Presta, M., Dell'Era P., Mitola S., Moroni E., Ronca R., and Rusnati M.. 2005. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16:159–178. 10.1016/j.cytogfr.2005.01.004 PubMed DOI

Rabouille, C. 2017. Pathways of unconventional protein secretion. Trends Cell Biol. 27:230–240. 10.1016/j.tcb.2016.11.007 PubMed DOI

Raiborg, C., Wenzel E.M., Pedersen N.M., and Stenmark H.. 2016. Phosphoinositides in membrane contact sites. Biochem. Soc. Trans. 44:425–430. 10.1042/BST20150190 PubMed DOI

Rayne, F., Debaisieux S., Yezid H., Lin Y.L., Mettling C., Konate K., Chazal N., Arold S.T., Pugniere M., Sanchez F., et al. . 2010. Phosphatidylinositol-(4, 5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J. 29:1348–1362. 10.1038/emboj.2010.32 PubMed DOI PMC

Rog, T., Pasenkiewicz-Gierula M., Vattulainen I., and Karttunen M.. 2009. Ordering effects of cholesterol and its analogues. Biochim. Biophys. Acta. 1788:97–121. 10.1016/j.bbamem.2008.08.022 PubMed DOI

Rothman, J.E. 1994. Mechanisms of intracellular protein transport. Nature. 372:55–63. 10.1038/372055a0 PubMed DOI

Rothman, J.E., and Wieland F.T.. 1996. Protein sorting by transport vesicles. Science. 272:227–234. 10.1126/science.272.5259.227 PubMed DOI

Rubin, D.B. 1981. The bayesian bootstrap. Ann. Statist. 9:130–134. 10.1214/aos/1176345338 DOI

Schäfer, T., Zentgraf H., Zehe C., Brugger B., Bernhagen J., and Nickel W.. 2004. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J. Biol. Chem. 279:6244–6251. 10.1074/jbc.M310500200 PubMed DOI

Schekman, R., and Orci L.. 1996. Coat proteins and vesicle budding. Science. 271:1526–1533. 10.1126/science.271.5255.1526 PubMed DOI

Schindelin, J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. . 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9:676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schlicht, B., and Zagnoni M.. 2015. Droplet-interface-bilayer assays in microfluidic passive networks. Sci. Rep. 5:9951. 10.1038/srep09951 PubMed DOI PMC

Serral Gracià, R., Bezlyepkina N., Knorr R.L., Lipowsky R., and Dimova R.. 2010. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: Fluctuation and electrodeformation analysis of giant vesicles. Soft Matter. 6:1472–1482. 10.1039/b920629a DOI

Sezgin, E., Levental I., Mayor S., and Eggeling C.. 2017. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:361–374. 10.1038/nrm.2017.16 PubMed DOI PMC

Sitia, R., and Rubartelli A.. 2018. The unconventional secretion of IL-1β: Handling a dangerous weapon to optimize inflammatory responses. Semin. Cell Dev. Biol. 83:12–21. 10.1016/j.semcdb.2018.03.011 PubMed DOI

Sparn, C., Dimou E., Meyer A., Saleppico R., Wegehingel S., Gerstner M., Klaus S., Ewers H., and Nickel W.. 2022a. Glypican-1 drives unconventional secretion of fibroblast growth factor 2. Elife. 11:e75545. 10.7554/eLife.75545 PubMed DOI PMC

Sparn, C., Meyer A., Saleppico R., and Nickel W.. 2022b. Unconventional secretion mediated by direct protein self-translocation across the plasma membranes of mammalian cells. Trends Biochem. Sci. 47:699–709. 10.1016/j.tibs.2022.04.001 PubMed DOI

Steck, T.L., and Lange Y.. 2018. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 19:750–760. 10.1111/tra.12586 PubMed DOI

Steringer, J.P., Bleicken S., Andreas H., Zacherl S., Laussmann M., Temmerman K., Contreras F.X., Bharat T.A., Lechner J., Müller H.M., et al. . 2012. Phosphatidylinositol 4, 5-bisphosphate (PI(4, 5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J. Biol. Chem. 287:27659–27669. 10.1074/jbc.M112.381939 PubMed DOI PMC

Steringer, J.P., Lange S., Cujova S., Sachl R., Poojari C., Lolicato F., Beutel O., Muller H.M., Unger S., Coskun U., et al. . 2017. Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. Elife. 6:e28985. 10.7554/eLife.28985 PubMed DOI PMC

Steringer, J.P., and Nickel W.. 2018. A direct gateway into the extracellular space: Unconventional secretion of FGF2 through self-sustained plasma membrane pores. Semin. Cell Dev. Biol. 83:3–7. 10.1016/j.semcdb.2018.02.010 PubMed DOI

Takei, T., Yaguchi T., Fujii T., Nomoto T., Toyota T., and Fujinami M.. 2015. Measurement of membrane tension of free standing lipid bilayers via laser-induced surface deformation spectroscopy. Soft Matter. 11:8641–8647. 10.1039/c5sm01264c PubMed DOI

Taylor, G.J., Venkatesan G.A., Collier C.P., and Sarles S.A.. 2015. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter. 11:7592–7605. 10.1039/c5sm01005e PubMed DOI

Temmerman, K., Ebert A.D., Müller H.M., Sinning I., Tews I., and Nickel W.. 2008. A direct role for phosphatidylinositol-4, 5-bisphosphate in unconventional secretion of fibroblast growth factor 2. Traffic. 9:1204–1217. 10.1111/j.1600-0854.2008.00749.x PubMed DOI

Temmerman, K., and Nickel W.. 2009. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. J. Lipid Res. 50:1245–1254. 10.1194/jlr.D800043-JLR200 PubMed DOI PMC

Thutupalli, S., Herminghaus S., and Seemann R.. 2011. Bilayer membranes in micro-fluidics: From gel emulsions to soft functional devices. Soft Matter. 7:1312–1320. 10.1039/c0sm00312c DOI

Tieleman, D.P., Leontiadou H., Mark A.E., and Marrink S.J.. 2003. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125:6382–6383. 10.1021/ja029504i PubMed DOI

Tinevez, J.Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y., Shorte S.L., and Eliceiri K.W.. 2017. TrackMate: An open and extensible platform for single-particle tracking. Methods. 115:80–90. 10.1016/j.ymeth.2016.09.016 PubMed DOI

Torrado, L.C., Temmerman K., Müller H.M., Mayer M.P., Seelenmeyer C., Backhaus R., and Nickel W.. 2009. An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J. Cell Sci. 122:3322–3329. 10.1242/jcs.049791 PubMed DOI

Torrie, G.M., and Valleau J.P.. 1974. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28:578–581. 10.1016/0009-2614(74)80109-0 DOI

Torrie, G., and Valleau J.. 1977. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 23:187–199. 10.1016/0021-9991(77)90121-8 DOI

Tsujita, K., and Itoh T.. 2015. Phosphoinositides in the regulation of actin cortex and cell migration. Biochim. Biophys. Acta. 1851:824–831. 10.1016/j.bbalip.2014.10.011 PubMed DOI

van den Brink-van der Laan, E., Killian J.A., and de Kruijff B.. 2004. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta. 1666:275–288. 10.1016/j.bbamem.2004.06.010 PubMed DOI

van Meer, G., Voelker D.R., and Feigenson G.W.. 2008. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–124. 10.1038/nrm2330 PubMed DOI PMC

Vargas, J.N., Seemann R., and Fleury J.B.. 2014. Fast membrane hemifusion via dewetting between lipid bilayers. Soft Matter. 10:9293–9299. 10.1039/c4sm01577k PubMed DOI

Verlet, L. 1967. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. J. Arch. 159:98–103. 10.1103/physrev.159.98 DOI

Wang, H.Y., Bharti D., and Levental I.. 2020. Membrane heterogeneity beyond the plasma membrane. Front. Cell Dev. Biol. 8:580814. 10.3389/fcell.2020.580814 PubMed DOI PMC

Yang, S.T., Kreutzberger A.J.B., Lee J., Kiessling V., and Tamm L.K.. 2016. The role of cholesterol in membrane fusion. Chem. Phys. Lipids. 199:136–143. 10.1016/j.chemphyslip.2016.05.003 PubMed DOI PMC

Zacherl, S., La Venuta G., Müller H.M., Wegehingel S., Dimou E., Sehr P., Lewis J.D., Erfle H., Pepperkok R., and Nickel W.. 2015. A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J. Biol. Chem. 290:3654–3665. 10.1074/jbc.M114.590067 PubMed DOI PMC

Zehe, C., Engling A., Wegehingel S., Schafer T., and Nickel W.. 2006. Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. Proc. Natl. Acad. Sci. USA. 103:15479–15484. 10.1073/pnas.0605997103 PubMed DOI PMC

Zhang, M., Liu L., Lin X., Wang Y., Li Y., Guo Q., Li S., Sun Y., Tao X., Zhang D., et al. . 2020. A translocation pathway for vesicle-mediated unconventional protein secretion. Cell. 181:637–652.e15. 10.1016/j.cell.2020.03.031 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space

. 2024 Jan 22 ; 12 () : . [epub] 20240122

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace