Determining the Functional Oligomeric State of Membrane-Associated Protein Oligomers Forming Membrane Pores on Giant Lipid Vesicles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37148264
PubMed Central
PMC10267887
DOI
10.1021/acs.analchem.2c05692
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- fibroblastový růstový faktor 2 * metabolismus MeSH
- lipidy MeSH
- membránové proteiny * metabolismus MeSH
- membrány MeSH
- multimerizace proteinu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroblastový růstový faktor 2 * MeSH
- lipidy MeSH
- membránové proteiny * MeSH
Several peripheral membrane proteins are known to form membrane pores through multimerization. In many cases, in biochemical reconstitution experiments, a complex distribution of oligomeric states has been observed that may, in part, be irrelevant to their physiological functions. This phenomenon makes it difficult to identify the functional oligomeric states of membrane lipid interacting proteins, for example, during the formation of transient membrane pores. Using fibroblast growth factor 2 (FGF2) as an example, we present a methodology applicable to giant lipid vesicles by which functional oligomers can be distinguished from nonspecifically aggregated proteins without functionality. Two distinct populations of fibroblast growth factor 2 were identified with (i) dimers to hexamers and (ii) a broad population of higher oligomeric states of membrane-associated FGF2 oligomers significantly distorting the original unfiltered histogram of all detectable oligomeric species of FGF2. The presented statistical approach is relevant for various techniques for characterizing membrane-dependent protein oligomerization.
Department of Physics University of Helsinki P O Box 64 FI 00014 Helsinki Finland
Faculty of Mathematics and Physics Charles University Ke Karlovu 2027 3 121 16 Prague Czech Republic
Heidelberg University Biochemistry Center Im Neuenheimer Feld 328 69120 Heidelberg Germany
Zobrazit více v PubMed
Moertelmaier M.; Brameshuber M.; Linimeier M.; Schütz G. J.; Stockinger H. Thinning out Clusters While Conserving Stoichiometry of Labeling. Appl. Phys. Lett. 2005, 87, 26390310.1063/1.2158031. DOI
Gwosch K. C.; Pape J. K.; Balzarotti F.; Hoess P.; Ellenberg J.; Ries J.; Hell S. W. MINFLUX Nanoscopy Delivers 3D Multicolor Nanometer Resolution in Cells. Nat. Methods 2020, 17, 217–224. 10.1038/s41592-019-0688-0. PubMed DOI
Hell S. W.; Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 78010.1364/ol.19.000780. PubMed DOI
Rust M. J.; Bates M.; Zhuang X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 2006, 3, 793–795. 10.1038/nmeth929. PubMed DOI PMC
Boehr D. D.; McElheny D.; Dyson H. J.; Wrightt P. E. The Dynamic Energy Landscape of Dihydrofolate Reductase Catalysis. Science 2006, 313, 1638–1642. 10.1126/science.1130258. PubMed DOI
Gupta R.; Ghosh S. JNK3 Phosphorylates Bax Protein and Induces Ability to Form Pore on Bilayer Lipid Membrane. Biochim. Open 2017, 4, 41–46. 10.1016/j.biopen.2017.02.001. PubMed DOI PMC
Simonyan L.; Légiot A.; Lascu I.; Durand G.; Giraud M. F.; Gonzalez C.; Manon S. The Substitution of Proline 168 Favors Bax Oligomerization and Stimulates Its Interaction with LUVs and Mitochondria. Biochim. Biophys. Acta, Biomembr. 2017, 1859, 1144–1155. 10.1016/j.bbamem.2017.03.010. PubMed DOI
Aluvila S.; Mandal T.; Hustedt E.; Fajer P.; Choe J. Y.; Oh K. J. Organization of the Mitochondrial Apoptotic BAK Pore: Oligomerization of the BAK Homodimers. J. Biol. Chem. 2014, 289, 2537–2551. 10.1074/jbc.M113.526806. PubMed DOI PMC
Pieta P.; Mirza J.; Lipkowski J. Direct Visualization of the Alamethicin Pore Formed in a Planar Phospholipid Matrix. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 21223–21227. 10.1073/pnas.1201559110. PubMed DOI PMC
Rahaman A.; Lazaridis T. A Thermodynamic Approach to Alamethicin Pore Formation. Biochim. Biophys. Acta, Biomembr. 2014, 1838, 98–105. 10.1016/j.bbamem.2013.09.012. PubMed DOI PMC
Mulvihill E.; Sborgi L.; Mari S. A.; Pfreundschuh M.; Hiller S.; Müller D. J. Mechanism of Membrane Pore Formation by Human Gasdermin-D. EMBO J. 2018, 37, e9832110.15252/embj.201798321. PubMed DOI PMC
James H. P.; Jadhav S. Kinetics of Pore Formation in Stearoyl-Oleoyl-Phosphatidylcholine Vesicles by PH Sensitive Cell Penetrating Peptide GALA. Chem. Phys. Lipids 2021, 241, 10513910.1016/j.chemphyslip.2021.105139. PubMed DOI
Jiao F.; Ruan Y.; Scheuring S.. High-Speed Atomic Force Microscopy to Study Pore-Forming Proteins. In Methods in Enzymology; Academic Press Inc, 2021; Vol. 649, pp 189–21710.1016/bs.mie.2021.01.033. PubMed DOI
Stahelin R.Monitoring Peripheral Protein Oligomerization on Biological Membranes. In Methods in Cell Biology; Academic Press Inc., 2013; Vol. 117, pp 359–371. PubMed PMC
Subburaj Y.; Cosentino K.; Axman M.; Pedrueya-Villalmanyo E.; Hermann E.; Bleicken S.; Spatz J.; Garcı A. J. Bax Monomers Form Dimer Units in the Membrane That Further Self-Assemble into Multiple Coexisting Species. Nat. Commun. 2015, 6, 804210.1038/ncomms9042. PubMed DOI PMC
Steringer J. P.; Lange S.; Čujová S.; Šachl R.; Poojari C.; Lolicato F.; Beutel O.; Müller H. M.; Unger S.; Coskun Ü.; Honigmann A.; Vattulainen I.; Hof M.; Freund C.; Nickel W. Key Steps in Unconventional Secretion of Fibroblast Growth Factor 2 Reconstituted with Purified Components. eLife 2017, 6, e2898510.7554/eLife.28985. PubMed DOI PMC
Šachl R.; Čujová S.; Singh V.; Riegerová P.; Kapusta P.; Müller H. M.; Steringer J. P.; Hof M.; Nickel W. Functional Assay to Correlate Protein Oligomerization States with Membrane Pore Formation. Anal. Chem. 2020, 92, 14861–14866. 10.1021/acs.analchem.0c03276. PubMed DOI
Scomparin C.; Lecuyer S.; Ferreira M.; Charitat T.; Tinland B. Diffusion in Supported Lipid Bilayers: Influence of Substrate and Preparation Technique on the Internal Dynamics. Eur. Phys. J. E 2009, 28, 211–220. 10.1140/epje/i2008-10407-3. PubMed DOI
Wagner M. L.; Tamm L. K. Tethered Polymer-Supported Planar Lipid Bilayers for Reconstitution of Integral Membrane Proteins: Silane-Polyethyleneglycol-Lipid as a Cushion and Covalent Linker. Biophys. J. 2000, 79, 1400–1414. 10.1016/S0006-3495(00)76392-2. PubMed DOI PMC
Honigmann A.; Mueller V.; Hell S. W.; Eggeling C. STED Microscopy Detects and Quantifies Liquid Phase Separation in Lipid Membranes Using a New Far-Red Emitting Fluorescent Phosphoglycerolipid Analogue. Faraday Discuss. 2013, 161, 77–89. 10.1039/c2fd20107k. PubMed DOI
Dimou E.; Cosentino K.; Platonova E.; Ros U.; Sadeghi M.; Kashyap P.; Katsinelos T.; Wegehingel S.; Noé F.; García-Sáez A. J.; Ewers H.; Nickel W. Single Event Visualization of Unconventional Secretion of FGF2. J. Cell Biol. 2019, 218, 683–699. 10.1083/jcb.201802008. PubMed DOI PMC
Ries J.; Petrášek Z.; García-Sáez A. J.; Schwille P. A Comprehensive Framework for Fluorescence Cross-Correlation Spectroscopy. New J. Phys. 2010, 12, 11300910.1088/1367-2630/12/11/113009. DOI
Benda A.; Beneš M.; Mareček V.; Lhotský A.; Hermens W. T.; Hof M. How to Determine Diffusion Coefficients in Planar Phospholipid Systems by Confocal Fluorescence Correlation Spectroscopy. Langmuir 2003, 19, 4120–4126. 10.1021/la0270136. DOI
Humpolíčková J.; Gielen E.; Benda A.; Fagulova V.; Vercammen J.; VandeVen M.; Hof M.; Ameloot M.; Engelborghs Y. Probing Diffusion Laws within Cellular Membranes by Z-Scan Fluorescence Correlation Spectroscopy. Biophys. J. 2006, 91, L23–L25. 10.1529/biophysj.106.089474. PubMed DOI PMC
Chen Y.; Wei L. N.; Müller J. D. Probing Protein Oligomerization in Living Cells with Fluorescence Fluctuation Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15492–15497. 10.1073/pnas.2533045100. PubMed DOI PMC
Ulbrich M. H.; Isacoff E. Y. Subunit Counting in Membrane-Bound Proteins. Nat. Methods 2007, 4, 319–321. 10.1038/nmeth1024. PubMed DOI PMC
Balasubramanian H.; Sankaran J.; Pandey S.; Goh C. J. H.; Wohland T. The Dependence of EGFR Oligomerization on Environment and Structure: A Camera-Based N&B Study. Biophys. J. 2022, 121, 4452–4466. 10.1016/j.bpj.2022.11.003. PubMed DOI PMC
Fukushima R.; Yamamoto J.; Kinjo M. Empirical Bayes Method Using Surrounding Pixel Information for Number and Brightness Analysis. Biophys. J. 2021, 120, 2156–2171. 10.1016/j.bpj.2021.03.033. PubMed DOI PMC
Dunsing V.; Luckner M.; Zühlke B.; Petazzi R. A.; Herrmann A.; Chiantia S. Optimal Fluorescent Protein Tags for Quantifying Protein Oligomerization in Living Cells. Sci. Rep. 2018, 8, 1063410.1038/s41598-018-28858-0. PubMed DOI PMC
Widengren J.; Mets U.; Rigler R. Fluorescence Correlation Spectroscopy of Triplet States in Solution: A Theoretical and Experimental Study. J. Phys. Chem. A 1995, 99, 13368–13379. 10.1021/j100036a009. DOI
Angelova M. I.; Dimitrov D. S. Liposome Electroformation. Faraday Discuss. Chem. Soc. 1986, 81, 303–311. 10.1039/DC9868100303. DOI
Dimou E.; Nickel W. Unconventional Mechanisms of Eukaryotic Protein Secretion. Curr. Biol. 2018, 28, R406–R410. 10.1016/j.cub.2017.11.074. PubMed DOI
Bikfalvi A.; Klein S.; Pintucci G.; Rifkin D. B. Biological Roles of Fibroblast Growth Factor-2. Endocr. Rev. 1997, 18, 26–45. 10.1210/er.18.1.26. PubMed DOI
Temmerman K.; Ebert A. D.; Müller H. M.; Sinning I.; Tews I.; Nickel W. A Direct Role for Phosphatidylinositol-4,5-Bisphosphate in Unconventional Secretion of Fibroblast Growth Factor 2. Traffic 2008, 9, 1204–1217. 10.1111/j.1600-0854.2008.00749.x. PubMed DOI
Temmerman K.; Nickel W. A Novel Flow Cytometric Assay to Quantify Interactions between Proteins and Membrane Lipids. J. Lipid Res. 2009, 50, 1245–1254. 10.1194/jlr.D800043-JLR200. PubMed DOI PMC
Steringer J. P.; Bleicken S.; Andreas H.; Zacherl S.; Laussmann M.; Temmerman K.; Contreras F. X.; Bharat T. A. M.; Lechner J.; Müller H. M.; Briggs J. A. G.; García-Sáez A. J.; Nickel W. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P 2)-Dependent Oligomerization of Fibroblast Growth Factor 2 (FGF2) Triggers the Formation of a Lipidic Membrane Pore Implicated in Unconventional Secretion. J. Biol. Chem. 2012, 287, 27659–27669. 10.1074/jbc.M112.381939. PubMed DOI PMC
Müller H. M.; Steringer J. P.; Wegehingel S.; Bleicken S.; Münster M.; Dimou E.; Unger S.; Weidmann G.; Andreas H.; García-Sáez A. J.; Wild K.; Sinning I.; Nickel W. Formation of Disulfide Bridges Drives Oligomerization, Membrane Pore Formation, and Translocation of Fibroblast Growth Factor 2 to Cell Surfaces. J. Biol. Chem. 2015, 290, 8925–8937. 10.1074/jbc.M114.622456. PubMed DOI PMC
Sparn C.; Dimou E.; Meyer A.; Saleppico R.; Wegehingel S.; Gerstner M.; Klaus S.; Ewers H.; Nickel W. Glypican-1 Drives Unconventional Secretion of Fibroblast Growth Factor 2. eLife 2022, 11, e7554510.7554/eLife.75545. PubMed DOI PMC
Zehe C.; Engling A.; Wegehingel S.; Schäfer T.; Nickel W. Cell-Surface Heparan Sulfate Proteoglycans Are Essential Components of the Unconventional Export Machinery of FGF-2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15479–15484. 10.1073/pnas.0605997103. PubMed DOI PMC
Nickel W. The Unconventional Secretory Machinery of Fibroblast Growth Factor 2. Traffic 2011, 12, 799–805. 10.1111/j.1600-0854.2011.01187.x. PubMed DOI
Nickel W. Unconventional Secretion: An Extracellular Trap for Export of Fibroblast Growth Factor 2. J. Cell Sci. 2007, 120, 2295–2299. 10.1242/jcs.011080. PubMed DOI