Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28916783
PubMed Central
PMC5601457
DOI
10.1038/s41598-017-12021-2
PII: 10.1038/s41598-017-12021-2
Knihovny.cz E-zdroje
- MeSH
- estrální cyklus * MeSH
- feromony analýza MeSH
- lipokaliny analýza MeSH
- myši MeSH
- vagina chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
- lipokaliny MeSH
Female house mice produce pheromone-carrying major urinary proteins (MUPs) in a cycling manner, thus reaching the maximum urinary production just before ovulation. This is thought to occur to advertise the time of ovulation via deposited urine marks. This study aimed to characterize the protein content from the house mouse vaginal flushes to detect putative vaginal-advertising molecules for a direct identification of reproductive states. Here we show that the mouse vaginal discharge contains lipocalins including those from the odorant binding (OBP) and major urinary (MUP) protein families. OBPs were highly expressed but only slightly varied throughout the cycle, whilst several MUPs were differentially abundant. MUP20 or 'darcin', was thought to be expressed only by males. However, in females it was significantly up-regulated during estrus similarly as the recently duplicated central/group-B MUPs (sMUP17 and highly expressed sMUP9), which in the mouse urine are male biased. MUPs rise between proestrus and estrus, remain steady throughout metestrus, and are co-expressed with antimicrobial proteins. Thus, we suggest that MUPs and potentially also OBPs are important components of female vaginal advertising of the house mouse.
Zobrazit více v PubMed
Cora MC, Kooistra L, Travlos G. Vaginal Cytology of the Laboratory Rat and Mouse: Review and Criteria for the Staging of the Estrous Cycle Using Stained Vaginal Smears. Toxicol Pathol. 2015;43:776–793. doi: 10.1177/0192623315570339. PubMed DOI
Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images. PLoS One. 2012;7:e35538. doi: 10.1371/journal.pone.0035538. PubMed DOI PMC
Stopka P, Macdonald DW. Signal interchange during mating in the Wood mouse (Apodemus sylvaticus): the concept of active and passive signalling. Behaviour. 1998;135:231–249. doi: 10.1163/156853998793066339. DOI
Goldman JM, Murr AS, Cooper RL. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol. 2007;80:84–97. doi: 10.1002/bdrb.20106. PubMed DOI
Whitten WK. Occurence of anoestrus in mice caged in groups. Journal of Endocrinology. 1959;18:102–107. doi: 10.1677/joe.0.0180102. PubMed DOI
Whitten WK. Modification of the oestrous cycle of the mouse by external stimuli associated with the male. Changes in the oestrous cycle determined by vaginal smears. J. Endocrinol. 1958;17:307–313. doi: 10.1677/joe.0.0170307. PubMed DOI
Marsden HM, Bronson FH. Estrus Synchrony in Mice: Alteration by Exposure to Male Urine. Science. 1965;144:1469. doi: 10.1126/science.144.3625.1469. PubMed DOI
Bronson FH, Marsden HM. Male-Induced synchrony of estrus in deermice. General and comparative endocrinology. 1964;4:634–637. doi: 10.1016/0016-6480(64)90073-5. PubMed DOI
Sharrow SD, Novotny MV, Stone MJ. Thermodynamic analysis of binding between mouse major urinary protein-I and the pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry. 2003;42:6302–6309. doi: 10.1021/bi026423q. PubMed DOI
Sharrow SD, Vaughn JL, Žídek L, Novotny MV, Stone MJ. Pheromone binding by polymorphic mouse major urinary proteins. Protein Science. 2002;11:2247–2256. doi: 10.1110/ps.0204202. PubMed DOI PMC
Novotny MV, et al. A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem. Biol. 1999;6:377–383. doi: 10.1016/S1074-5521(99)80049-0. PubMed DOI
Zidek L, et al. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry. 1999;38:9850–9861. doi: 10.1021/bi990497t. PubMed DOI
Stopková R, Stopka P, Janotová K, Jedelsky PL. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus) J Chem Ecol. 2007;33:861–869. doi: 10.1007/s10886-007-9262-9. PubMed DOI
Enk VM, et al. Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. Mol Biosyst. 2016;12:3005–3016. doi: 10.1039/C6MB00278A. PubMed DOI PMC
Thoss M, et al. Diversity of major urinary proteins (MUPs) in wild house mice. Sci Rep. 2016;6:38378. doi: 10.1038/srep38378. PubMed DOI PMC
Thoß, M., Luzynski, K., Ante, M., Miller, I. & Penn, D. J. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Frontiers in Ecology and Evolution3, doi:10.3389/fevo.2015.00071 (2015). PubMed PMC
Logan, D. W., Marton, T. F. & Stowers, L. Species Specificity in Major Urinary Proteins by Parallel Evolution. PLoS ONE3, doi: 10.1371/journal.pone.0003280 (2008). PubMed PMC
Mudge JM, et al. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 2008;9:R91. doi: 10.1186/gb-2008-9-5-r91. PubMed DOI PMC
Stopková, R., Hladovcová, D., J., K., Vyoral, D. & Stopka, P. Multiple roles of secretory lipocalins (MUP, OBP) in mice. Folia Zool. 58, 29–40 (2009).
Janotová K, Stopka P. Mechanisms of chemical communication: the role of Major Urinary Proteins. Folia Zool. 2009;58:41–55.
Kwak J, et al. Changes in volatile compounds of mouse urine as it ages: their interactions with water and urinary proteins. Physiol Behav. 2013;120:211–219. doi: 10.1016/j.physbeh.2013.08.011. PubMed DOI
Timm DE, Baker LJ, Mueller H, Zidek L, Novotny MV. Structural basis of pheromone binding to mouse major urinary protein (MUP-I) Protein Science. 2001;10:997–1004. doi: 10.1110/ps.52201. PubMed DOI PMC
Phelan MM, et al. The structure, stability and pheromone binding of the male mouse protein sex pheromone darcin. PLoS One. 2014;9:e108415. doi: 10.1371/journal.pone.0108415. PubMed DOI PMC
Zala SM, Potts WK, Penn DJ. Scent-marking displays provide honest signals of health and infection. Behavioral Ecology. 2004;15:338–344. doi: 10.1093/beheco/arh022. DOI
Thonhauser KE, Raveh S, Hettyey A, Beissmann H, Penn DJ. Scent marking increases male reproductive success in wild house mice. Anim Behav. 2013;86:1013–1021. doi: 10.1016/j.anbehav.2013.09.004. PubMed DOI PMC
Stopkova, R., Klempt, P., Kuntova, B. & Stopka, P. On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ 6, e3541, doi:10.7717/peerj.3541 (2017). PubMed PMC
Stopka P, et al. On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep. 2016;6:32481. doi: 10.1038/srep32481. PubMed DOI PMC
Singer A, Macrides F, clancy AN, Agosta WC. Purification and Analysis of a Proteinaceous Aphrodisiac Pheromone from Hamster Vaginal Discharge. Journal of Biological Chemistry. 1986;261:13323–13326. PubMed
Stopkova R, et al. Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus. BMC Genomics. 2010;11:45. doi: 10.1186/1471-2164-11-45. PubMed DOI PMC
Hagemeyer P, et al. Searching for major urinary proteins (MUPs) as chemosignals in urine of subterranean rodents. J Chem Ecol. 2011;37:687–694. doi: 10.1007/s10886-011-9971-y. PubMed DOI
Pes D, Dal Monte M, Ganni M, Pelosi P. Isolation of two odorant-binding proteins from mouse nasal tissue. Comp. Biochem. Physiol. 1992;103B:1011–1017. PubMed
Stopkova R, Dudkova B, Hajkova P, Stopka P. Complementary roles of mouse lipocalins in chemical communication and immunity. Biochem Soc T. 2014;42:893–898. doi: 10.1042/BST20140053. PubMed DOI
Stopkova, R. et al. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Frontiers in Ecology and Evolution4, doi:10.3389/fevo.2016.00047 (2016).
Strotmann J, Breer H. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochemistry and cell biology. 2011;136:357–369. doi: 10.1007/s00418-011-0850-y. PubMed DOI
Stopka P, Janotova K, Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiology & Behavior. 2007;91:667–670. doi: 10.1016/j.physbeh.2007.03.030. PubMed DOI
Janotova K, Stopka P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J Chem Ecol. 2011;37:647–656. doi: 10.1007/s10886-011-9966-8. PubMed DOI
Achiraman S, Ponmanickam P, Ganesh DS, Archunan G. Detection of estrus by male mice: synergistic role of olfactory-vomeronasal system. Neurosci Lett. 2010;477:144–148. doi: 10.1016/j.neulet.2010.04.051. PubMed DOI
Muthukumar S, et al. Urinary lipocalin protein in a female rodent with correlation to phases in the estrous cycle: an experimental study accompanied by in silico analysis. PLoS One. 2013;8:e71357. doi: 10.1371/journal.pone.0071357. PubMed DOI PMC
Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Rodriguez J, Gupta N, Smith RD, Pevzner PA. Does trypsin cut before proline? J Proteome Res. 2008;7:300–305. doi: 10.1021/pr0705035. PubMed DOI
Crawley, M. J. The R Book. (Wiley Publishing, 2007).
Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–193. doi: 10.1093/bioinformatics/19.2.185. PubMed DOI
Gentleman RC, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Pavelka N, et al. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004;5:203. doi: 10.1186/1471-2105-5-203. PubMed DOI PMC
Arnott D, et al. Selective detection of membrane proteins without antibodies: a mass spectrometric version of the Western blot. Mol Cell Proteomics. 2002;1:148–156. doi: 10.1074/mcp.M100027-MCP200. PubMed DOI
MacLean B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC
Pavelka N, et al. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics. 2008;7:631–644. doi: 10.1074/mcp.M700240-MCP200. PubMed DOI
Henry J, et al. Hornerin is a component of the epidermal cornified cell envelopes. FASEB J. 2011;25:1567–1576. doi: 10.1096/fj.10-168658. PubMed DOI
Makino T, Takaishi M, Morohashi M, Huh NH. Hornerin, a novel profilaggrin-like protein and differentiation-specific marker isolated from mouse skin. J Biol Chem. 2001;276:47445–47452. doi: 10.1074/jbc.M107512200. PubMed DOI
DeSouza MM, et al. MUC1/episialin: a critical barrier in the female reproductive tract. Journal of Reproductive Immunology. 1999;45:127–158. doi: 10.1016/S0165-0378(99)00046-7. PubMed DOI
Noguchi K, Tsukumi K, Urano T. Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits, and dogs. Comp Med. 2003;53:404–412. PubMed
LeClair EE. Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J Dent Res. 2003;82:944–950. doi: 10.1177/154405910308201202. PubMed DOI
Leclair, E. E. Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem Soc Trans31, 801–805, 10.1042/ (2003). PubMed
Gallo RL, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem. 1997;272:13088–13093. doi: 10.1074/jbc.272.20.13088. PubMed DOI
Yamasaki K, et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 2006;20:2068–2080. doi: 10.1096/fj.06-6075com. PubMed DOI
Kasparek P, et al. KLK5 and KLK7 Ablation Fully Rescues Lethality of Netherton Syndrome-Like Phenotype. PLoS Genet. 2017;13:e1006566. doi: 10.1371/journal.pgen.1006566. PubMed DOI PMC
Yip KS, Suvorov A, Connerney J, Lodato NJ, Waxman DJ. Changes in mouse uterine transcriptome in estrus and proestrus. Biol Reprod. 2013;89:13. doi: 10.1095/biolreprod.112.107334. PubMed DOI PMC
Mouse Genome Sequencing C, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562. doi: 10.1038/nature01262. PubMed DOI
Royet J, Gupta D, Dziarski R. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol. 2011;11:837–851. PubMed
Goetz DH, et al. The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell. 2002;10:1033–1043. doi: 10.1016/S1097-2765(02)00708-6. PubMed DOI
Flo TH, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–921. doi: 10.1038/nature03104. PubMed DOI
Scott A, Weldon S, Taggart CC. SLPI and elafin: multifunctional antiproteases of the WFDC family. Biochem Soc Trans. 2011;39:1437–1440. doi: 10.1042/BST0391437. PubMed DOI
Roberts, S. A. et al. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol. 8, 10.1186/1741-7007-1188-1175. (2010). PubMed PMC
Ferrer I, et al. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci. 2016;8:163. doi: 10.3389/fnagi.2016.00163. PubMed DOI PMC
Kwak J, Strasser E, Luzynski K, Thoss M, Penn DJ. Are MUPs a Toxic Waste Disposal System? PLoS One. 2016;11:e0151474. doi: 10.1371/journal.pone.0151474. PubMed DOI PMC
Deciphering the chemical language of inbred and wild mouse conspecific scents
Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice
Variation in mouse chemical signals is genetically controlled and environmentally modulated
Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study
ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype