Deciphering the chemical language of inbred and wild mouse conspecific scents
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
368482240/GRK2416
Deutsche Forschungsgemeinschaft
378028035
Deutsche Forschungsgemeinschaft
I/83533
Volkswagen Foundation
1-1193-153.13/2012
German-Israeli Foundation for Scientific Research and Development
PubMed
38747258
PubMed Central
PMC11095937
DOI
10.7554/elife.90529
PII: 90529
Knihovny.cz E-zdroje
- Klíčová slova
- biochemistry, chemical biology, chemosensory system, chemosignaling, mouse, neuroscience, olfaction, vomeronasal organ, vomeronasal sensory neurons,
- MeSH
- feromony moč metabolismus MeSH
- inbrední kmeny myší MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odoranty analýza MeSH
- vomeronazální orgán * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.
BIOCEV group Department of Zoology Faculty of Science Charles University Prague Czech Republic
Department of Chemosensation Institute for Biology 2 RWTH Aachen University Aachen Germany
Institute of Neurophysiology Uniklinik RWTH Aachen University Aachen Germany
Research Training Group 2416 MultiSenses MultiScales RWTH Aachen University Aachen Germany
doi: 10.1101/2023.06.24.546367 PubMed
Před aktualizacídoi: 10.7554/eLife.90529.1 PubMed
Před aktualizacídoi: 10.7554/eLife.90529.2 PubMed
Zobrazit více v PubMed
Albone ES. Mammalian Semiochemistry: The Investigation of Chemical Signals between Mammals. John Wiley & Sons, Inc; 1984.
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biology. 2021;19:133. doi: 10.1186/s12915-021-01064-7. PubMed DOI PMC
Ben-Shaul Y. Extracting social information from chemosensory cues: consideration of several scenarios and their functional implications. Frontiers in Neuroscience. 2015;9:439. doi: 10.3389/fnins.2015.00439. PubMed DOI PMC
Beynon RJ, Veggerby C, Payne CE, Robertson DHL, Gaskell SJ, Humphries RE, Hurst JL. Polymorphism in major urinary proteins: molecular heterogeneity in a wild mouse population. Journal of Chemical Ecology. 2002;28:1429–1446. doi: 10.1023/a:1016252703836. PubMed DOI
Breiman L. Random Forests. Machine Learning. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Brennan PA, Zufall F. Pheromonal communication in vertebrates. Nature. 2006;444:308–315. doi: 10.1038/nature05404. PubMed DOI
Celsi F, D’Errico A, Menini A. Responses to sulfated steroids of female mouse vomeronasal sensory neurons. Chemical Senses. 2012;37:849–858. doi: 10.1093/chemse/bjs068. PubMed DOI
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Scientific Reports. 2017;7:11674. doi: 10.1038/s41598-017-12021-2. PubMed DOI PMC
Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR, Saghatelian A, Cravatt BF, Stowers L. Identification of protein pheromones that promote aggressive behaviour. Nature. 2007;450:899–902. doi: 10.1038/nature05997. PubMed DOI
Cheetham SA, Smith AL, Armstrong SD, Beynon RJ, Hurst JL. Limited variation in the major urinary proteins of laboratory mice. Physiology & Behavior. 2009;96:253–261. doi: 10.1016/j.physbeh.2008.10.005. PubMed DOI
Cichy A, Ackels T, Tsitoura C, Kahan A, Gronloh N, Söchtig M, Engelhardt CH, Ben-Shaul Y, Müller F, Spehr J, Spehr M. Extracellular pH regulates excitability of vomeronasal sensory neurons. The Journal of Neuroscience. 2015;35:4025–4039. doi: 10.1523/JNEUROSCI.2593-14.2015. PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Demir E, Li K, Bobrowski-Khoury N, Sanders JI, Beynon RJ, Hurst JL, Kepecs A, Axel R. The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature. 2020;578:137–141. doi: 10.1038/s41586-020-1967-8. PubMed DOI
Dey S, Chamero P, Pru JK, Chien MS, Ibarra-Soria X, Spencer KR, Logan DW, Matsunami H, Peluso JJ, Stowers L. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell. 2015;161:1334–1344. doi: 10.1016/j.cell.2015.04.052. PubMed DOI PMC
Doyle WI, Dinser JA, Cansler HL, Zhang X, Dinh DD, Browder NS, Riddington IM, Meeks JP. Faecal bile acids are natural ligands of the mouse accessory olfactory system. Nature Communications. 2016;7:11936. doi: 10.1038/ncomms11936. PubMed DOI PMC
Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nature Reviews. Neuroscience. 2003;4:551–562. doi: 10.1038/nrn1140. PubMed DOI
Duvaux L, Belkhir K, Boulesteix M, Boursot P. Isolation and gene flow: inferring the speciation history of European house mice. Molecular Ecology. 2011;20:5248–5264. doi: 10.1111/j.1365-294X.2011.05343.x. PubMed DOI
Duyck K, DuTell V, Ma L, Paulson A, Yu CR. Pronounced strain-specific chemosensory receptor gene expression in the mouse vomeronasal organ. BMC Genomics. 2017;18:965. doi: 10.1186/s12864-017-4364-4. PubMed DOI PMC
Fluegge D, Moeller LM, Cichy A, Gorin M, Weth A, Veitinger S, Cainarca S, Lohmer S, Corazza S, Neuhaus EM, Baumgartner W, Spehr J, Spehr M. Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling. Nature Neuroscience. 2012;15:754–762. doi: 10.1038/nn.3074. PubMed DOI
Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W, Gross ML, Holy TE. A molecular code for identity in the vomeronasal system. Cell. 2015;163:313–323. doi: 10.1016/j.cell.2015.09.012. PubMed DOI PMC
Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature Reviews. Drug Discovery. 2008;7:489–503. doi: 10.1038/nrd2589. PubMed DOI PMC
Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R. A tutorial review: Metabolomics and partial least squares-discriminant analysis--A marriage of convenience or A shotgun wedding. Analytica Chimica Acta. 2015;879:10–23. doi: 10.1016/j.aca.2015.02.012. PubMed DOI
Haga-Yamanaka S, Ma L, He J, Qiu Q, Lavis LD, Looger LL, Yu CR. Integrated action of pheromone signals in promoting courtship behavior in male mice. eLife. 2014;3:e03025. doi: 10.7554/eLife.03025. PubMed DOI PMC
Haga-Yamanaka S, Ma L, Yu CR. Tuning properties and dynamic range of type 1 vomeronasal receptors. Frontiers in Neuroscience. 2015;9:244. doi: 10.3389/fnins.2015.00244. PubMed DOI PMC
Hagendorf S, Fluegge D, Engelhardt CH, Spehr M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. The Journal of Neuroscience. 2009;29:206–221. doi: 10.1523/JNEUROSCI.3656-08.2009. PubMed DOI PMC
Hamacher C, Degen R, Franke M, Switacz VK, Fleck D, Katreddi RR, Hernandez-Clavijo A, Strauch M, Horio N, Hachgenei E, Spehr J, Liberles SD, Merhof D, Forni PE, Zimmer-Bensch G, Ben-Shaul Y, Spehr M. A revised conceptual framework for mouse vomeronasal pumping and stimulus sampling. Current Biology. 2024;34:1206–1221. doi: 10.1016/j.cub.2024.01.036. PubMed DOI PMC
He J, Ma L, Kim S, Nakai J, Yu CR. Encoding gender and individual information in the mouse vomeronasal organ. Science. 2008;320:535–538. doi: 10.1126/science.1154476. PubMed DOI PMC
He J, Ma L, Kim S, Schwartz J, Santilli M, Wood C, Durnin MH, Yu CR. Distinct signals conveyed by pheromone concentrations to the mouse vomeronasal organ. The Journal of Neuroscience. 2010;30:7473–7483. doi: 10.1523/JNEUROSCI.0825-10.2010. PubMed DOI PMC
Hori T, Tomatsu S, Nakashima Y, Uchiyama A, Fukuda S, Sukegawa K, Shimozawa N, Suzuki Y, Kondo N, Horiuchi T, Ogura S, Orii T. Mucopolysaccharidosis type IVA: common double deletion in the N-acetylgalactosamine-6-sulfatase gene (GALNS) Genomics. 1995;26:535–542. doi: 10.1016/0888-7543(95)80172-i. PubMed DOI
Hurst JL, Robertson DHL, Tolladay U, Beynon RJ. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Animal Behaviour. 1998;55:1289–1297. doi: 10.1006/anbe.1997.0650. PubMed DOI
Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DH, Cavaggioni A, Beynon RJ. Individual recognition in mice mediated by major urinary proteins. Nature. 2001;414:631–634. doi: 10.1038/414631a. PubMed DOI
Hurst JL. Scent Marking and Social communicationAnimal Communication Networks. Cambridge University Press; 2005. DOI
Ibarra-Soria X, Nakahara TS, Lilue J, Jiang Y, Trimmer C, Souza MAA, Netto PHM, Ikegami K, Murphy NR, Kusma M, Kirton A, Saraiva LR, Keane TM, Matsunami H, Mainland J, Papes F, Logan DW. Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. eLife. 2017;6:21476. doi: 10.7554/eLife.21476. PubMed DOI PMC
Ishii KK, Osakada T, Mori H, Miyasaka N, Yoshihara Y, Miyamichi K, Touhara K. A labeled-line neural circuit for pheromone-mediated sexual behaviors in mice. Neuron. 2017;95:123–137. doi: 10.1016/j.neuron.2017.05.038. PubMed DOI
Isogai Y, Si S, Pont-Lezica L, Tan T, Kapoor V, Murthy VN, Dulac C. Molecular organization of vomeronasal chemoreception. Nature. 2011;478:241–245. doi: 10.1038/nature10437. PubMed DOI PMC
Kahan A, Ben-Shaul Y. Extracting behaviorally relevant traits from natural stimuli: benefits of combinatorial representations at the accessory olfactory bulb. PLOS Computational Biology. 2016;12:e1004798. doi: 10.1371/journal.pcbi.1004798. PubMed DOI PMC
Kaur AW, Ackels T, Kuo TH, Cichy A, Dey S, Hays C, Kateri M, Logan DW, Marton TF, Spehr M, Stowers L. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 2014;157:676–688. doi: 10.1016/j.cell.2014.02.025. PubMed DOI PMC
Kimoto H, Haga S, Sato K, Touhara K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 2005;437:898–901. doi: 10.1038/nature04033. PubMed DOI
Lê Cao KA, Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics. 2011;12:0–16. doi: 10.1186/1471-2105-12-253. PubMed DOI PMC
Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV, Shipley MT, Zufall F. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 2000;405:792–796. doi: 10.1038/35015572. PubMed DOI
Leinders-Zufall T, Brennan P, Widmayer P, Maul-Pavicic A, Jäger M, Li XH, Breer H, Zufall F, Boehm T. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 2004;306:1033–1037. doi: 10.1126/science.1102818. PubMed DOI
Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995;376:737–745. doi: 10.1038/376737a0. PubMed DOI
Lilue J, Doran AG, Fiddes IT, Abrudan M, Armstrong J, Bennett R, Chow W, Collins J, Collins S, Czechanski A, Danecek P, Diekhans M, Dolle DD, Dunn M, Durbin R, Earl D, Ferguson-Smith A, Flicek P, Flint J, Frankish A, Fu B, Gerstein M, Gilbert J, Goodstadt L, Harrow J, Howe K, Ibarra-Soria X, Kolmogorov M, Lelliott CJ, Logan DW, Loveland J, Mathews CE, Mott R, Muir P, Nachtweide S, Navarro FCP, Odom DT, Park N, Pelan S, Pham SK, Quail M, Reinholdt L, Romoth L, Shirley L, Sisu C, Sjoberg-Herrera M, Stanke M, Steward C, Thomas M, Threadgold G, Thybert D, Torrance J, Wong K, Wood J, Yalcin B, Yang F, Adams DJ, Paten B, Keane TM. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics. 2018;50:1574–1583. doi: 10.1038/s41588-018-0223-8. PubMed DOI PMC
Luo M, Fee MS, Katz LC. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science. 2003;299:1196–1201. doi: 10.1126/science.1082133. PubMed DOI
McCord JM, Fridovich I. Superoxide Dismutase. Journal of Biological Chemistry. 1969;244:6049–6055. doi: 10.1016/S0021-9258(18)63504-5. PubMed DOI
Miller CH, Campbell P, Sheehan MJ. Distinct evolutionary trajectories of V1R clades across mouse species. BMC Evolutionary Biology. 2020;20:99. doi: 10.1186/s12862-020-01662-z. PubMed DOI PMC
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal detection and coding in the accessory olfactory system. Chemical Senses. 2018;43:667–695. doi: 10.1093/chemse/bjy061. PubMed DOI PMC
Moudra A, Niederlova V, Novotny J, Schmiedova L, Kubovciak J, Matejkova T, Drobek A, Pribikova M, Stopkova R, Cizkova D, Neuwirth A, Michalik J, Krizova K, Hudcovic T, Kolar M, Kozakova H, Kreisinger J, Stopka P, Stepanek O. Phenotypic and clonal stability of antigen-inexperienced memory-like T cells across the genetic background, hygienic status, and aging. Journal of Immunology. 2021;206:2109–2121. doi: 10.4049/jimmunol.2001028. PubMed DOI PMC
Mucignat-Caretta C, Redaelli M, Caretta A. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. Frontiers in Neuroanatomy. 2012;6:46. doi: 10.3389/fnana.2012.00046. PubMed DOI PMC
Nodari F, Hsu FF, Fu X, Holekamp TF, Kao LF, Turk J, Holy TE. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. The Journal of Neuroscience. 2008;28:6407–6418. doi: 10.1523/JNEUROSCI.1425-08.2008. PubMed DOI PMC
Novotny MV. Pheromones, binding proteins and receptor responses in rodents. Biochemical Society Transactions. 2003;31:117–122. doi: 10.1042/bst0310117. PubMed DOI
O’Brien JS, Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB Journal. 1991;5:301–308. doi: 10.1096/fasebj.5.3.2001789. PubMed DOI
Overath P, Sturm T, Rammensee HG. Of volatiles and peptides: in search for MHC-dependent olfactory signals in social communication. Cellular and Molecular Life Sciences. 2014;71:2429–2442. doi: 10.1007/s00018-014-1559-6. PubMed DOI PMC
Park SH, Podlaha O, Grus WE, Zhang J. The microevolution of V1r vomeronasal receptor genes in mice. Genome Biology and Evolution. 2011;3:401–412. doi: 10.1093/gbe/evr039. PubMed DOI PMC
Pavelka N, Pelizzola M, Vizzardelli C, Capozzoli M, Splendiani A, Granucci F, Ricciardi-Castagnoli P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004;5:203. doi: 10.1186/1471-2105-5-203. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Research. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Phifer-Rixey M, Nachman MW. Insights into mammalian biology from the wild house mouse Mus musculus. eLife. 2015;4:05959. doi: 10.7554/eLife.05959. PubMed DOI PMC
Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459:574–577. doi: 10.1038/nature08029. PubMed DOI
Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biology. 2010;8:75. doi: 10.1186/1741-7007-8-75. PubMed DOI PMC
Roberts SA, Davidson AJ, McLean L, Beynon RJ, Hurst JL. Pheromonal induction of spatial learning in mice. Science. 2012;338:1462–1465. doi: 10.1126/science.1225638. PubMed DOI
Röck F, Mueller S, Weimar U, Rammensee HG, Overath P. Comparative analysis of volatile constituents from mice and their urine. Journal of Chemical Ecology. 2006;32:1333–1346. doi: 10.1007/s10886-006-9091-2. PubMed DOI
Rodriguez J, Gupta N, Smith RD, Pevzner PA. Does trypsin cut before proline? Journal of Proteome Research. 2008;7:300–305. doi: 10.1021/pr0705035. PubMed DOI
Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: An R package for ’omics feature selection and multiple data integration. PLOS Computational Biology. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Stopkova R, Klempt P, Kuntova B, Stopka P. On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ. 2017;5:e3541. doi: 10.7717/peerj.3541. PubMed DOI PMC
Stopková R, Otčenášková T, Matějková T, Kuntová B, Stopka P. Biological roles of lipocalins in chemical communication, reproduction, and regulation of microbiota. Frontiers in Physiology. 2021;12:740006. doi: 10.3389/fphys.2021.740006. PubMed DOI PMC
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Scientific Reports. 2023;13:8573. doi: 10.1038/s41598-023-35450-8. PubMed DOI PMC
Sturm T, Leinders-Zufall T, Maček B, Walzer M, Jung S, Pömmerl B, Stevanović S, Zufall F, Overath P, Rammensee HG. Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nature Communications. 2013;4:1616. doi: 10.1038/ncomms2610. PubMed DOI
Thévenaz P, Ruttimann UE, Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing. 1998;7:27–41. doi: 10.1109/83.650848. PubMed DOI
Thorn A, Steinfeld R, Ziegenbein M, Grapp M, Hsiao HH, Urlaub H, Sheldrick GM, Gärtner J, Krätzner R. Structure and activity of the only human RNase T2. Nucleic Acids Research. 2012;40:8733–8742. doi: 10.1093/nar/gks614. PubMed DOI PMC
Tirindelli R, Dibattista M, Pifferi S, Menini A. From pheromones to behavior. Physiological Reviews. 2009;89:921–956. doi: 10.1152/physrev.00037.2008. PubMed DOI
Turaga D, Holy TE. Organization of vomeronasal sensory coding revealed by fast volumetric calcium imaging. The Journal of Neuroscience. 2012;32:1612–1621. doi: 10.1523/JNEUROSCI.5339-11.2012. PubMed DOI PMC
Uchida N, Poo C, Haddad R. Coding and transformations in the olfactory system. Annual Review of Neuroscience. 2014;37:363–385. doi: 10.1146/annurev-neuro-071013-013941. PubMed DOI
van de Rijn M, Heimfeld S, Spangrude GJ, Weissman IL. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family. PNAS. 1989;86:4634–4638. doi: 10.1073/pnas.86.12.4634. PubMed DOI PMC
Veitinger S, Veitinger T, Cainarca S, Fluegge D, Engelhardt CH, Lohmer S, Hatt H, Corazza S, Spehr J, Neuhaus EM, Spehr M. Ca 2+ in mouse Sertoli cells. The Journal of Physiology. 2011;589:5033–5055. doi: 10.1113/jphysiol.2011.216309. PubMed DOI PMC
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Scientific Reports. 2021;11:5312. doi: 10.1038/s41598-021-84274-x. PubMed DOI PMC
Wade CM, Daly MJ. Genetic variation in laboratory mice. Nature Genetics. 2005;37:1175–1180. doi: 10.1038/ng1666. PubMed DOI
Wilson KCP, Raisman G. Age-related changes in the neurosensory epithelium of the mouse vomeronasal organ: Extended period of post-natal growth in size and evidence for rapid cell turnover in the adult. Brain Research. 1980;185:103–113. doi: 10.1016/0006-8993(80)90675-7. PubMed DOI
Wong WM, Nagel M, Hernandez-Clavijo A, Pifferi S, Menini A, Spehr M, Meeks JP. Sensory adaptation to chemical cues by vomeronasal sensory neurons. eNeuro. 2018;5:ENEURO.0223-18.2018. doi: 10.1523/ENEURO.0223-18.2018. PubMed DOI PMC
Wyatt TD. Pheromones. Current Biology. 2017;27:R739–R743. doi: 10.1016/j.cub.2017.06.039. PubMed DOI
Wynn EH, Sánchez-Andrade G, Carss KJ, Logan DW. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics. 2012;13:415. doi: 10.1186/1471-2164-13-415. PubMed DOI PMC
Xu PS, Lee D, Holy TE. Experience-dependent plasticity drives individual differences in pheromone-sensing neurons. Neuron. 2016;91:878–892. doi: 10.1016/j.neuron.2016.07.034. PubMed DOI PMC