Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CA19125
COST - European Cooperation in Science and Technology
PubMed
34281171
PubMed Central
PMC8268041
DOI
10.3390/ijms22137118
PII: ijms22137118
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, biotic stress, epigenetic, methodology, stress memory, transgenerational memory,
- MeSH
- aklimatizace genetika MeSH
- epigeneze genetická MeSH
- epigenomika metody MeSH
- fyziologická adaptace genetika MeSH
- fyziologický stres genetika MeSH
- metylace DNA MeSH
- regulace genové exprese u rostlin MeSH
- šlechtění rostlin metody MeSH
- typy dědičnosti MeSH
- zemědělské plodiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.
Center of Biological Research Margarita Salas CIB CSIC Ramiro de Maeztu 9 28040 Madrid Spain
Department of Biology University of Florence 50019 Sesto Fiorentino Italy
Faculty of Agriculture University of Novi Sad Sq Dositeja Obradovića 8 21000 Novi Sad Serbia
Genomic Research Department Thünen Institute of Forest Genetics 22927 Grosshansdorf Germany
Zobrazit více v PubMed
Crisp P.A., Ganguly D., Eichten S.R., Borevitz J.O., Pogson B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2016;2:e1501340. doi: 10.1126/sciadv.1501340. PubMed DOI PMC
Lamke J., Brzezinka K., Baurle I. HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana. Transcription. 2016;7:111–114. doi: 10.1080/21541264.2016.1187550. PubMed DOI PMC
Fabrizio P., Garvis S., Palladino F. Histone Methylation and Memory of Environmental Stress. Cells. 2019;8:339. doi: 10.3390/cells8040339. PubMed DOI PMC
Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K. Transcriptional Regulatory Network of Plant Heat Stress Response. Trends Plant. Sci. 2017;22:53–65. doi: 10.1016/j.tplants.2016.08.015. PubMed DOI
Stief A., Brzezinka K., Lämke J., Bäurle I. Epigenetic responses to heat stress at different time scales and the involvement of small RNAs. Plant. Signal Behav. 2014;9:e970430. doi: 10.4161/15592316.2014.970430. PubMed DOI PMC
Oberkofler V., Pratx L., Bäurle I. Epigenetic regulation of abiotic stress memory: Maintaining the good things while they last. Curr. Opin. Plant. Biol. 2021;61:102007. doi: 10.1016/j.pbi.2021.102007. PubMed DOI PMC
Bouche F., Woods D.P., Amasino R.M. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. Plant. Physiol. 2017;173:27–35. doi: 10.1104/pp.16.01322. PubMed DOI PMC
Baurle I., Trindade I. Chromatin regulation of somatic abiotic stress memory. J. Exp. Bot. 2020;71:5269–5279. doi: 10.1093/jxb/eraa098. PubMed DOI
Asaari M.S.M., Mertens S., Dhondt S., Inzé D., Wuyts N., Scheunders P. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput. Electron. Agric. 2019;162:749–758. doi: 10.1016/j.compag.2019.05.018. DOI
Martinez-Medina A., Flors V., Heil M., Mauch-Mani B., Pieterse C.M.J., Pozo M.J., Ton J., van Dam N.M., Conrath U. Recognizing Plant Defense Priming. Trends Plant. Sci. 2016;21:818–822. doi: 10.1016/j.tplants.2016.07.009. PubMed DOI
Mauch-Mani B., Baccelli I., Luna E., Flors V. Defense Priming: An Adaptive Part of Induced Resistance. Annu Rev. Plant. Biol. 2017;68:485–512. doi: 10.1146/annurev-arplant-042916-041132. PubMed DOI
Kinoshita T., Seki M. Epigenetic memory for stress response and adaptation in plants. Plant. Cell Physiol. 2014;55:1859–1863. doi: 10.1093/pcp/pcu125. PubMed DOI
Conrath U., Beckers G.J., Langenbach C.J., Jaskiewicz M.R. Priming for enhanced defense. Annu Rev. Phytopathol. 2015;53:97–119. doi: 10.1146/annurev-phyto-080614-120132. PubMed DOI
Balestrini R., Chitarra W., Antoniou C., Ruocco M., Fotopoulos V. Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. J. Agric. Sci. 2018;156:680–688. doi: 10.1017/S0021859618000126. DOI
Ashapkin V.V., Kutueva L.I., Aleksandrushkina N.I., Vanyushin B.F. Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2020;21:7457. doi: 10.3390/ijms21207457. PubMed DOI PMC
Ioannou A., Gohari G., Papaphilippou P., Panahirad S., Akbari A., Dadpour M.R., Krasia-Christoforou T., Fotopoulos V. Advanced nanomaterials in agriculture under a changing climate: The way to the future? Environ. Exp. Bot. 2020;176:104048. doi: 10.1016/j.envexpbot.2020.104048. DOI
Jaskiewicz M., Conrath U., Peterhänsel C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 2011;12:50–55. doi: 10.1038/embor.2010.186. PubMed DOI PMC
Savvides A., Ali S., Tester M., Fotopoulos V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? Trends Plant. Sci. 2016;21:329–340. doi: 10.1016/j.tplants.2015.11.003. PubMed DOI
Westman S.M., Kloth K.J., Hanson J., Ohlsson A.B., Albrectsen B.R. Defence priming in Arabidopsis—A Meta-Analysis. Sci. Rep. 2019;9:13309. doi: 10.1038/s41598-019-49811-9. PubMed DOI PMC
Wilkinson S.W., Mageroy M.H., Lopez Sanchez A., Smith L.M., Furci L., Cotton T.E.A., Krokene P., Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. Annu Rev. Phytopathol. 2019;57:505–529. doi: 10.1146/annurev-phyto-082718-095959. PubMed DOI
De Vega D., Holden N., Hedley P.E., Morris J., Luna E., Newton A. Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes. Plant. Cell Env. 2021;44:290–303. doi: 10.1111/pce.13921. PubMed DOI PMC
Tirnaz S., Batley J. DNA Methylation: Toward Crop Disease Resistance Improvement. Trends Plant. Sci. 2019;24:1137–1150. doi: 10.1016/j.tplants.2019.08.007. PubMed DOI
Kerchev P., van der Meer T., Sujeeth N., Verlee A., Stevens C.V., Van Breusegem F., Gechev T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 2020;40:107503. doi: 10.1016/j.biotechadv.2019.107503. PubMed DOI
Turgut-Kara N., Arikan B., Celik H. Epigenetic memory and priming in plants. Genetica. 2020;148:47–54. doi: 10.1007/s10709-020-00093-4. PubMed DOI
Espinas N.A., Saze H., Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. Front. Plant. Sci. 2016;7:1201. doi: 10.3389/fpls.2016.01201. PubMed DOI PMC
Lämke J., Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124. doi: 10.1186/s13059-017-1263-6. PubMed DOI PMC
He Y., Li Z. Epigenetic Environmental Memories in Plants: Establishment, Maintenance, and Reprogramming. Trends Genet. 2018;34:856–866. doi: 10.1016/j.tig.2018.07.006. PubMed DOI
Sani E., Herzyk P., Perrella G., Colot V., Amtmann A. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 2013;14:R59. doi: 10.1186/gb-2013-14-6-r59. PubMed DOI PMC
Johnson R., Puthur J.T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant. Physiol. Biochem. 2021;162:247–257. doi: 10.1016/j.plaphy.2021.02.034. PubMed DOI
Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. Primed plants do not forget. Environ. Exp. Bot. 2013;94:46–56. doi: 10.1016/j.envexpbot.2012.02.013. DOI
Singh P., Yekondi S., Chen P.W., Tsai C.H., Yu C.W., Wu K., Zimmerli L. Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner. Plant. Cell. 2014;26:2676–2688. doi: 10.1105/tpc.114.123356. PubMed DOI PMC
Lopez Sanchez A., Stassen J.H., Furci L., Smith L.M., Ton J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. Plant. J. 2016;88:361–374. doi: 10.1111/tpj.13252. PubMed DOI PMC
Bertini L., Proietti S., Focaracci F., Sabatini B., Caruso C. Epigenetic control of defense genes following MeJA-induced priming in rice (O. sativa) J. Plant. Physiol. 2018;228:166–177. PubMed
Kim J.M., To T.K., Matsui A., Tanoi K., Kobayashi N.I., Matsuda F., Habu Y., Ogawa D., Sakamoto T., Matsunaga S., et al. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants. 2017;3:17097. doi: 10.1038/nplants.2017.97. PubMed DOI
Li J.W., Zhang X.C., Wang M.R., Bi W.L., Faisal M., da Silva J.A.T., Volk G.M., Wang Q.C. Development, progress and future prospects in cryobiotechnology of Lilium spp. Plant. Methods. 2019;15:125. doi: 10.1186/s13007-019-0506-9. PubMed DOI PMC
Luna E., Bruce T.J., Roberts M.R., Flors V., Ton J. Next-generation systemic acquired resistance. Plant. Physiol. 2012;158:844–853. doi: 10.1104/pp.111.187468. PubMed DOI PMC
De Palma M., Salzano M., Villano C., Aversano R., Lorito M., Ruocco M., Docimo T., Piccinelli A.L., D’Agostino N., Tucci M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res. 2019;6:5. doi: 10.1038/s41438-018-0079-1. PubMed DOI PMC
Zhang T., Cooper S., Brockdorff N. The interplay of histone modifications—Writers that read. EMBO Rep. 2015;16:1467–1481. doi: 10.15252/embr.201540945. PubMed DOI PMC
Sako K., Nguyen H.M., Seki M. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants. Plant. Cell Physiol. 2021;61:1995–2003. doi: 10.1093/pcp/pcaa119. PubMed DOI
Sako K., Kim J.-M., Matsui A., Nakamura K., Tanaka M., Kobayashi M., Saito K., Nishino N., Kusano M., Taji T., et al. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana. Plant. Cell Physiol. 2015;57:776–783. doi: 10.1093/pcp/pcv199. PubMed DOI
Nguyen H.M., Sako K., Matsui A., Ueda M., Tanaka M., Ito A., Nishino N., Yoshida M., Seki M. Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. Plant. Signal Behav. 2018;13:e1448333. doi: 10.1080/15592324.2018.1448333. PubMed DOI PMC
Goldschmidt E.E. Plant grafting: New mechanisms, evolutionary implications. Front. Plant. Sci. 2014;5:727. doi: 10.3389/fpls.2014.00727. PubMed DOI PMC
Mudge K., Janick J., Scofield S., Goldschmidt E.E. A History of Grafting. John Wiley & Sons; Hoboken, NJ, USA: 2009.
Wu R., Wang X., Lin Y., Ma Y., Liu G., Yu X., Zhong S., Liu B. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE. 2013;8:e61995. doi: 10.1371/journal.pone.0061995. PubMed DOI PMC
Kapazoglou A., Tani E., Avramidou E.V., Abraham E.M., Gerakari M., Megariti S., Doupis G., Doulis A.G. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. Front. Plant. Sci. 2021;11:2160. doi: 10.3389/fpls.2020.613004. PubMed DOI PMC
Tsaballa A., Xanthopoulou A., Madesis P., Tsaftaris A., Nianiou-Obeidat I. Vegetable Grafting From a Molecular Point of View: The Involvement of Epigenetics in Rootstock-Scion Interactions. Front. Plant. Sci. 2020;11:621999. doi: 10.3389/fpls.2020.621999. PubMed DOI PMC
Molnar A., Melnyk C.W., Bassett A., Hardcastle T.J., Dunn R., Baulcombe D.C. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–875. doi: 10.1126/science.1187959. PubMed DOI
Haroldsen V., Szczerba M.W., Aktas H., Lopez J., Odias M.J., Chi-Ham C.L., Labavitch J., Bennett A.B., Powell A.L. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement. Front. Plant. Sci. 2012;3:39. doi: 10.3389/fpls.2012.00039. PubMed DOI PMC
Tamiru M., Hardcastle T.J., Lewsey M.G. Regulation of genome-wide DNA methylation by mobile small RNAs. New Phytol. 2018;217:540–546. doi: 10.1111/nph.14874. PubMed DOI
Lewsey M.G., Hardcastle T.J., Melnyk C.W., Molnar A., Valli A., Urich M.A., Nery J.R., Baulcombe D.C., Ecker J.R. Mobile small RNAs regulate genome-wide DNA methylation. Proc. Natl. Acad. Sci. USA. 2016;113:E801–E810. doi: 10.1073/pnas.1515072113. PubMed DOI PMC
Xanthopoulou A., Tsaballa A., Ganopoulos I., Kapazoglou A., Avramidou E., Aravanopoulos F.A., Moysiadis T., Osathanunkul M., Tsaftaris A., Doulis A.G., et al. Intra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L. Plant. Growth Regul. 2019;87:93–108. doi: 10.1007/s10725-018-0456-7. DOI
Cao L., Yu N., Li J., Qi Z., Wang D., Chen L. Heritability and Reversibility of DNA Methylation Induced by in vitro Grafting between Brassica juncea and B. oleracea. Sci. Rep. 2016;6:27233. doi: 10.1038/srep27233. PubMed DOI PMC
Ojolo S.P., Cao S., Priyadarshani S.V.G.N., Li W., Yan M., Aslam M., Zhao H., Qin Y. Regulation of Plant Growth and Development: A Review from a Chromatin Remodeling Perspective. Front. Plant. Sci. 2018;9:1232. doi: 10.3389/fpls.2018.01232. PubMed DOI PMC
Maury S., Sow M.D., Le Gac A.L., Genitoni J., Lafon-Placette C., Mozgova I. Phytohormone and Chromatin Crosstalk: The Missing Link for Developmental Plasticity? Front. Plant. Sci. 2019;10:395. doi: 10.3389/fpls.2019.00395. PubMed DOI PMC
Yona A.H., Frumkin I., Pilpel Y. A relay race on the evolutionary adaptation spectrum. Cell. 2015;163:549–559. doi: 10.1016/j.cell.2015.10.005. PubMed DOI
Saravana Kumar R.M., Wang Y., Zhang X., Cheng H., Sun L., He S., Hao F. Redox Components: Key Regulators of Epigenetic Modifications in Plants. Int. J. Mol. Sci. 2020;21:1419. PubMed PMC
Robert-Seilaniantz A., Navarro L., Bari R., Jones J.D. Pathological hormone imbalances. Curr. Opin. Plant. Biol. 2007;10:372–379. doi: 10.1016/j.pbi.2007.06.003. PubMed DOI
Baulcombe D.C., Dean C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb. Perspect. Biol. 2014;6:a019471. doi: 10.1101/cshperspect.a019471. PubMed DOI PMC
Heard E., Martienssen R.A. Transgenerational epigenetic inheritance: Myths and mechanisms. Cell. 2014;157:95–109. doi: 10.1016/j.cell.2014.02.045. PubMed DOI PMC
Mozgova I., Munoz-Viana R., Hennig L. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana. PLoS Genet. 2017;13:e1006562. doi: 10.1371/journal.pgen.1006562. PubMed DOI PMC
Gaillochet C., Lohmann J.U. The never-ending story: From pluripotency to plant developmental plasticity. Development. 2015;142:2237–2249. doi: 10.1242/dev.117614. PubMed DOI PMC
Lafos M., Kroll P., Hohenstatt M.L., Thorpe F.L., Clarenz O., Schubert D. Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation. PLoS Genet. 2011;7:e1002040. doi: 10.1371/journal.pgen.1002040. PubMed DOI PMC
Hébrard C., Peterson D.G., Willems G., Delaunay A., Jesson B., Lefèbvre M., Barnes S., Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. J. Exp. Bot. 2016;67:207–225. doi: 10.1093/jxb/erv449. PubMed DOI PMC
Sow M.D., Allona I., Ambroise C., Conde D., Fichot R., Gribkova S., Jorge V., Le-Provost G., Pâques L., Plomion C., et al. Chapter Twelve—Epigenetics in Forest Trees: State of the Art and Potential Implications for Breeding and Management in a Context of Climate Change. In: Mirouze M., Bucher E., Gallusci P., editors. Advances in Botanical Research. Volume 88. Academic Press; Cambridge, MA, USA: 2018. pp. 387–453.
Ueda M., Seki M. Histone Modifications Form Epigenetic Regulatory Networks to Regulate Abiotic Stress Response. Plant. Physiol. 2020;182:15–26. doi: 10.1104/pp.19.00988. PubMed DOI PMC
Leung J., Gaudin V. Who Rules the Cell? An Epi-Tale of Histone, DNA, RNA, and the Metabolic Deep State. Front. Plant. Sci. 2020;11:181. doi: 10.3389/fpls.2020.00181. PubMed DOI PMC
Chen X., Ding A.B., Zhong X. Functions and mechanisms of plant histone deacetylases. Sci. China Life Sci. 2020;63:206–216. doi: 10.1007/s11427-019-1587-x. PubMed DOI
Chen H., Feng H., Zhang X., Zhang C., Wang T., Dong J. An Arabidopsis E3 ligase HUB2 increases histone H2B monoubiquitination and enhances drought tolerance in transgenic cotton. Plant. Biotechnol. J. 2019;17:556–568. doi: 10.1111/pbi.12998. PubMed DOI PMC
Wang L., Wang C., Liu X., Cheng J., Li S., Zhu J.-K., Gong Z. Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2019;116:10576–10585. doi: 10.1073/pnas.1904143116. PubMed DOI PMC
Rasheed S., Bashir K., Kim J.-M., Ando M., Tanaka M., Seki M. The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci. Rep. 2018;8:7831. doi: 10.1038/s41598-018-26103-2. PubMed DOI PMC
Imran M., Hussain S., Rana M.S., Saleem M.H., Rasul F., Ali K.H., Potcho M.P., Pan S., Duan M., Tang X. Molybdenum improves 2-acetyl-1-pyrroline, grain quality traits and yield attributes in fragrant rice through efficient nitrogen assimilation under cadmium toxicity. Ecotoxicol. Environ. Saf. 2021;211:111911. doi: 10.1016/j.ecoenv.2021.111911. PubMed DOI
Storozhenko S., De Brouwer V., Volckaert M., Navarrete O., Blancquaert D., Zhang G.F., Lambert W., Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 2007;25:1277–1279. doi: 10.1038/nbt1351. PubMed DOI
Fesenko I., Spechenkova N., Mamaeva A., Makhotenko A.V., Love A.J., Kalinina N.O., Taliansky M. Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. Mol. Plant. Pathol. 2021;22:77–91. doi: 10.1111/mpp.13009. PubMed DOI PMC
González B., Vera P. Folate Metabolism Interferes with Plant Immunity through 1C Methionine Synthase-Directed Genome-wide DNA Methylation Enhancement. Mol. Plant. 2019;12:1227–1242. doi: 10.1016/j.molp.2019.04.013. PubMed DOI
Martinelli F., Dandekar A.M. Genetic Mechanisms of the Devious Intruder Candidatus Liberibacter in Citrus. Front. Plant. Sci. 2017;8:904. doi: 10.3389/fpls.2017.00904. PubMed DOI PMC
Tosetti R., Martinelli F., Tonutti P., Barupal D.K. Metabolomics Approach to Studying Minimally Processed Peach (Prunus Persica) Fruit. International Society for Horticultural Science (ISHS); Leuven, Belgium: 2012. pp. 1017–1021.
Natali L., Giordani T., Lercari B., Maestrini P., Cozza R., Pangaro T., Vernieri P., Martinelli F., Cavallini A. Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.) J. Plant. Physiol. 2007;164:263–273. doi: 10.1016/j.jplph.2006.01.015. PubMed DOI
Balan B., Caruso T., Martinelli F. Gaining Insight into Exclusive and Common Transcriptomic Features Linked with Biotic Stress Responses in Malus. Front. Plant. Sci. 2017;8:1569. doi: 10.3389/fpls.2017.01569. PubMed DOI PMC
Liu J., He Z. Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. Front. Plant. Sci. 2020;11:595603. doi: 10.3389/fpls.2020.595603. PubMed DOI PMC
Shanker A.K., Bhanu D., Maheswari M. Epigenetics and transgenerational memory in plants under heat stress. Plant. Physiol. Rep. 2020;25:583–593. doi: 10.1007/s40502-020-00557-x. DOI
Huang S., Zhang A., Jin J.B., Zhao B., Wang T.J., Wu Y., Wang S., Liu Y., Wang J., Guo P., et al. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response. New Phytol. 2019;223:1372–1387. doi: 10.1111/nph.15874. PubMed DOI
Vriet C., Hennig L., Laloi C. Stress-induced chromatin changes in plants: Of memories, metabolites and crop improvement. Cell Mol. Life Sci. 2015;72:1261–1273. doi: 10.1007/s00018-014-1792-z. PubMed DOI PMC
Gao G., Li J., Li H., Li F., Xu K., Yan G., Chen B., Qiao J., Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 2014;64:125–133. doi: 10.1270/jsbbs.64.125. PubMed DOI PMC
Baránek M., Čechová J., Raddová J., Holleinová V., Ondrušíková E., Pidra M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE. 2015;10:e0126638. doi: 10.1371/journal.pone.0126638. PubMed DOI PMC
Wang W.S., Pan Y.J., Zhao X.Q., Dwivedi D., Zhu L.H., Ali J., Fu B.Y., Li Z.K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.) J. Exp. Bot. 2011;62:1951–1960. doi: 10.1093/jxb/erq391. PubMed DOI PMC
Secco D., Wang C., Shou H., Schultz M.D., Chiarenza S., Nussaume L., Ecker J.R., Whelan J., Lister R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife. 2015;4:e09343. doi: 10.7554/eLife.09343. PubMed DOI PMC
Kangaspeska S., Stride B., Metivier R., Polycarpou-Schwarz M., Ibberson D., Carmouche R.P., Benes V., Gannon F., Reid G. Transient cyclical methylation of promoter DNA. Nature. 2008;452:112–115. doi: 10.1038/nature06640. PubMed DOI
Centomani I., Sgobba A., D’Addabbo P., Dipierro N., Paradiso A., De Gara L., Dipierro S., Viggiano L., de Pinto M.C. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma. 2015;252:1451–1459. doi: 10.1007/s00709-015-0772-y. PubMed DOI
Ding Y., Shi Y., Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. Mol. Plant. 2020;13:544–564. doi: 10.1016/j.molp.2020.02.004. PubMed DOI
Ito H., Gaubert H., Bucher E., Mirouze M., Vaillant I., Paszkowski J. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature. 2011;472:115–119. doi: 10.1038/nature09861. PubMed DOI
Iwasaki M., Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc. Natl. Acad. Sci. USA. 2014;111:8547–8552. doi: 10.1073/pnas.1402275111. PubMed DOI PMC
Bilichak A., Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. J. Exp. Bot. 2016;67:2081–2092. doi: 10.1093/jxb/erw066. PubMed DOI
Bose A.K., Moser B., Rigling A., Lehmann M.M., Milcu A., Peter M., Rellstab C., Wohlgemuth T., Gessler A. Memory of environmental conditions across generations affects the acclimation potential of scots pine. Plant. Cell Environ. 2020;43:1288–1299. doi: 10.1111/pce.13729. PubMed DOI PMC
Hauben M., Haesendonckx B., Standaert E., Van Der Kelen K., Azmi A., Akpo H., Van Breusegem F., Guisez Y., Bots M., Lambert B., et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl. Acad. Sci. USA. 2009;106:20109–20114. doi: 10.1073/pnas.0908755106. PubMed DOI PMC
Verhoeven K.J., Jansen J.J., van Dijk P.J., Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185:1108–1118. doi: 10.1111/j.1469-8137.2009.03121.x. PubMed DOI
Kathiria P., Sidler C., Golubov A., Kalischuk M., Kawchuk L.M., Kovalchuk I. Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants. Plant. Physiol. 2010;153:1859–1870. doi: 10.1104/pp.110.157263. PubMed DOI PMC
Bhadouriya S.L., Mehrotra S., Basantani M.K., Loake G.J., Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. Front. Plant. Sci. 2020;11:603380. doi: 10.3389/fpls.2020.603380. PubMed DOI PMC
Ding Y., Fromm M., Avramova Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 2012;3:740. doi: 10.1038/ncomms1732. PubMed DOI
Muller-Xing R., Xing Q., Goodrich J. Footprints of the sun: Memory of UV and light stress in plants. Front. Plant. Sci. 2014;5:474. PubMed PMC
Pecinka A., Rosa M., Schikora A., Berlinger M., Hirt H., Luschnig C., Scheid O.M. Transgenerational Stress Memory Is Not a General Response in Arabidopsis. PLoS ONE. 2009;4:e5202. doi: 10.1371/journal.pone.0005202. PubMed DOI PMC
Paszkowski J., Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant. Biol. 2011;14:195–203. doi: 10.1016/j.pbi.2011.01.002. PubMed DOI
Latzel V., Rendina González A.P., Rosenthal J. Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants. Front. Plant. Sci. 2016;7:1354. doi: 10.3389/fpls.2016.01354. PubMed DOI PMC
Springer N.M., Schmitz R.J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 2017;18:563–575. doi: 10.1038/nrg.2017.45. PubMed DOI
Tirnaz S., Batley J. Epigenetics: Potentials and Challenges in Crop Breeding. Mol. Plant. 2019;12:1309–1311. doi: 10.1016/j.molp.2019.09.006. PubMed DOI
Kawakatsu T., Ecker J.R. Diversity and dynamics of DNA methylation: Epigenomic resources and tools for crop breeding. Breed. Sci. 2019;69:191–204. doi: 10.1270/jsbbs.19005. PubMed DOI PMC
Perrone A., Martinelli F. Plant stress biology in epigenomic era. Plant. Sci. 2020;294:110376. doi: 10.1016/j.plantsci.2019.110376. PubMed DOI
Varotto S., Tani E., Abraham E., Krugman T., Kapazoglou A., Melzer R., Radanovic A., Miladinovic D. Epigenetics: Possible applications in climate-smart crop breeding. J. Exp. Bot. 2020;71:5223–5236. doi: 10.1093/jxb/eraa188. PubMed DOI PMC
Gallusci P., Dai Z., Genard M., Gauffretau A., Leblanc-Fournier N., Richard-Molard C., Vile D., Brunel-Muguet S. Epigenetics for Plant Improvement: Current Knowledge and Modeling Avenues. Trends Plant. Sci. 2017;22:610–623. doi: 10.1016/j.tplants.2017.04.009. PubMed DOI
Ingouff M., Rademacher S., Holec S., Soljic L., Xin N., Readshaw A., Foo S.H., Lahouze B., Sprunck S., Berger F. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr. Biol. 2010;20:2137–2143. doi: 10.1016/j.cub.2010.11.012. PubMed DOI
Xiao J., Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr. Opin. Plant. Biol. 2015;23:15–24. doi: 10.1016/j.pbi.2014.10.003. PubMed DOI
Zhou T., Yang X., Guo K., Deng J., Xu J., Gao W., Lindsey K., Zhang X. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton. Mol. Cell Proteom. 2016;15:2108–2124. doi: 10.1074/mcp.M115.049338. PubMed DOI PMC
Zhong S.H., Liu J.Z., Jin H., Lin L., Li Q., Chen Y., Yuan Y.X., Wang Z.Y., Huang H., Qi Y.J., et al. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2013;110:9171–9176. doi: 10.1073/pnas.1219655110. PubMed DOI PMC
Liu J., Feng L., Gu X., Deng X., Qiu Q., Li Q., Zhang Y., Wang M., Deng Y., Wang E., et al. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res. 2019;29:379–390. doi: 10.1038/s41422-019-0145-8. PubMed DOI PMC
Stassen J.H.M., López A., Jain R., Pascual-Pardo D., Luna E., Smith L.M., Ton J. The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Sci. Rep. 2018;8:14761. doi: 10.1038/s41598-018-32448-5. PubMed DOI PMC
Furci L., Jain R., Stassen J., Berkowitz O., Whelan J., Roquis D., Baillet V., Colot V., Johannes F., Ton J. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. Elife. 2019;8 doi: 10.7554/eLife.40655. PubMed DOI PMC
Johannes F., Porcher E., Teixeira F.K., Saliba-Colombani V., Simon M., Agier N., Bulski A., Albuisson J., Heredia F., Audigier P., et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5:e1000530. doi: 10.1371/journal.pgen.1000530. PubMed DOI PMC
Reinders J., Wulff B.B., Mirouze M., Mari-Ordonez A., Dapp M., Rozhon W., Bucher E., Theiler G., Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23:939–950. doi: 10.1101/gad.524609. PubMed DOI PMC
Alvarez-Venegas R., De la Peña C., Casas-Mollano J.A. Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications. Springer International Publishing; Cham, Switzerland: 2014.
Raju S.K.K., Shao M.R., Sanchez R., Xu Y.Z., Sandhu A., Graef G., Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant. Biotechnol. J. 2018;16:1836–1847. doi: 10.1111/pbi.12919. PubMed DOI PMC
Kundariya H., Yang X., Morton K., Sanchez R., Axtell M.J., Hutton S.F., Fromm M., Mackenzie S.A. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat. Commun. 2020;11:5343. doi: 10.1038/s41467-020-19140-x. PubMed DOI PMC
Yang X., Sanchez R., Kundariya H., Maher T., Dopp I., Schwegel R., Virdi K., Axtell M.J., Mackenzie S.A. Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nat. Commun. 2020;11:2214. doi: 10.1038/s41467-020-16036-8. PubMed DOI PMC
Rendina Gonzalez A.P., Preite V., Verhoeven K.J.F., Latzel V. Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens. Front. Plant. Sci. 2018;9:1677. doi: 10.3389/fpls.2018.01677. PubMed DOI PMC
Zheng X., Chen L., Xia H., Wei H., Lou Q., Li M., Li T., Luo L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci. Rep. 2017;7:39843. doi: 10.1038/srep39843. PubMed DOI PMC
Cong W., Miao Y., Xu L., Zhang Y., Yuan C., Wang J., Zhuang T., Lin X., Jiang L., Wang N., et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.) BMC Plant. Biol. 2019;19:282. doi: 10.1186/s12870-019-1887-7. PubMed DOI PMC
Byeon B., Bilichak A., Kovalchuk I. Transgenerational Response to Heat Stress in the Form of Differential Expression of Noncoding RNA Fragments in Brassica rapa Plants. Plant. Genome. 2019;12 doi: 10.3835/plantgenome2018.04.0022. PubMed DOI
Dalakouras A., Dadami E., Zwiebel M., Krczal G., Wassenegger M. Transgenerational maintenance of transgene body CG but not CHG and CHH methylation. Epigenetics. 2012;7:1071–1078. doi: 10.4161/epi.21644. PubMed DOI PMC
Zhang J., Zhang H., Srivastava A.K., Pan Y., Bai J., Fang J., Shi H., Zhu J.-K. Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant. Physiol. 2018;176:2082–2094. doi: 10.1104/pp.17.01432. PubMed DOI PMC
Ferreira L.J., Donoghue M.T.A., Barros P., Saibo N.J., Santos A.P., Oliveira M.M. Uncovering Differentially Methylated Regions (DMRs) in a Salt-Tolerant Rice Variety under Stress: One Step towards New Regulatory Regions for Enhanced Salt Tolerance. Epigenomes. 2019;3:4. doi: 10.3390/epigenomes3010004. PubMed DOI PMC
Wu K., Wang S., Song W., Zhang J., Wang Y., Liu Q., Yu J., Ye Y., Li S., Chen J., et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science. 2020;367:6478. doi: 10.1126/science.aaz2046. PubMed DOI
Cui X., Zhao P., Liang W., Cheng Q., Mu B., Niu F., Yan J., Liu C., Xie H., Kav N.N.V., et al. A Rapeseed WRKY Transcription Factor Phosphorylated by CPK Modulates Cell Death and Leaf Senescence by Regulating the Expression of ROS and SA-Synthesis-Related Genes. J. Agric. Food Chem. 2020;68:7348–7359. doi: 10.1021/acs.jafc.0c02500. PubMed DOI
Song X., Cao X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr. Opin. Plant. Biol. 2017;36:111–118. doi: 10.1016/j.pbi.2017.02.004. PubMed DOI
Quadrana L., Etcheverry M., Gilly A., Caillieux E., Madoui M.-A., Guy J., Bortolini Silveira A., Engelen S., Baillet V., Wincker P., et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 2019;10:3421. doi: 10.1038/s41467-019-11385-5. PubMed DOI PMC
Thieme M., Lanciano S., Balzergue S., Daccord N., Mirouze M., Bucher E. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol. 2017;18:134. doi: 10.1186/s13059-017-1265-4. PubMed DOI PMC
Yang Q., Li Z., Li W., Ku L., Wang C., Ye J., Li K., Yang N., Li Y., Zhong T., et al. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc. Natl. Acad. Sci. USA. 2013;110:16969–16974. doi: 10.1073/pnas.1310949110. PubMed DOI PMC
Mao X., Chen S., Li A., Zhai C., Jing R. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE. 2014;9:e84359. doi: 10.1371/journal.pone.0084359. PubMed DOI PMC
Zhang H., Tao Z., Hong H., Chen Z., Wu C., Li X., Xiao J., Wang S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat. Plants. 2016;2:16016. doi: 10.1038/nplants.2016.16. PubMed DOI
Ha J., Kwon H., Cho K.-H., Yoon M.Y., Kim M.Y., Lee S.-H. Identification of epigenetic variation associated with synchronous pod maturity in mungbean (Vigna radiata L.) Sci. Rep. 2020;10:17414. doi: 10.1038/s41598-020-74520-z. PubMed DOI PMC
Testillano P.S. Microspore embryogenesis: Targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 2019;70:2965–2978. doi: 10.1093/jxb/ery464. PubMed DOI
De-la-Pena C., Nic-Can G.I., Galaz-Avalos R.M., Avilez-Montalvo R., Loyola-Vargas V.M. The role of chromatin modifications in somatic embryogenesis in plants. Front. Plant. Sci. 2015;6:635. doi: 10.3389/fpls.2015.00635. PubMed DOI PMC
Solis M.T., Rodriguez-Serrano M., Meijon M., Canal M.J., Cifuentes A., Risueno M.C., Testillano P.S. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J. Exp. Bot. 2012;63:6431–6444. doi: 10.1093/jxb/ers298. PubMed DOI PMC
Berenguer E., Barany I., Solis M.T., Perez-Perez Y., Risueno M.C., Testillano P.S. Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation. Front. Plant. Sci. 2017;8:1161. doi: 10.3389/fpls.2017.01161. PubMed DOI PMC
Li Q., Eichten S.R., Hermanson P.J., Zaunbrecher V.M., Song J., Wendt J., Rosenbaum H., Madzima T.F., Sloan A.E., Huang J., et al. Genetic perturbation of the maize methylome. Plant. Cell. 2014;26:4602–4616. doi: 10.1105/tpc.114.133140. PubMed DOI PMC
Solís M.-T., El-Tantawy A.-A., Cano V., Risueño M.C., Testillano P.S. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front. Plant. Sci. 2015;6:472. doi: 10.3389/fpls.2015.00472. PubMed DOI PMC
Osorio-Montalvo P., Saenz-Carbonell L., De-la-Pena C. 5-Azacytidine: A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. Int. J. Mol. Sci. 2018;19:3182. doi: 10.3390/ijms19103182. PubMed DOI PMC
Surdonja K., Eggert K., Hajirezaei M.-R., Harshavardhan V.T., Seiler C., Von Wirén N., Sreenivasulu N., Kuhlmann M. Increase of DNA Methylation at the HvCKX2.1 Promoter by Terminal Drought Stress in Barley. Epigenomes. 2017;1:9. doi: 10.3390/epigenomes1020009. DOI
Hu J., Yang H., Mu J., Lu T., Peng J., Deng X., Kong Z., Bao S., Cao X., Zuo J. Nitric Oxide Regulates Protein Methylation during Stress Responses in Plants. Mol. Cell. 2017;67:702–710. doi: 10.1016/j.molcel.2017.06.031. PubMed DOI
Johnson L.M., Du J., Hale C.J., Bischof S., Feng S., Chodavarapu R.K., Zhong X., Marson G., Pellegrini M., Segal D.J., et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507:124–128. doi: 10.1038/nature12931. PubMed DOI PMC
Eichten S.R., Schmitz R.J., Springer N.M. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. Plant. Physiol. 2014;165:933–947. doi: 10.1104/pp.113.234211. PubMed DOI PMC
Tal O., Kisdi E., Jablonka E. Epigenetic Contribution to Covariance Between Relatives. Genetics. 2010;184:1037–1050. doi: 10.1534/genetics.109.112466. PubMed DOI PMC
Hofmeister B.T., Lee K., Rohr N.A., Hall D.W., Schmitz R.J. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 2017;18:155. doi: 10.1186/s13059-017-1288-x. PubMed DOI PMC
Lane A.K., Niederhuth C.E., Ji L., Schmitz R.J. pENCODE: A plant encyclopedia of DNA elements. Annu Rev. Genet. 2014;48:49–70. doi: 10.1146/annurev-genet-120213-092443. PubMed DOI PMC
Plant Responses to Biotic Stress: Old Memories Matter