Phytohormone and Chromatin Crosstalk: The Missing Link For Developmental Plasticity?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31024580
PubMed Central
PMC6459951
DOI
10.3389/fpls.2019.00395
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, epigenetics, meristem, robustness, signaling,
- Publikační typ
- časopisecké články MeSH
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Trebon Czechia
Department of Botany Charles University Prague Czechia
ESE Ecology and Ecosystem Health Agrocampus Ouest INRA Rennes France
Faculty of Science University of South Bohemia in Ceske Budejovice Ceske Budejovice Czechia
LBLGC INRA Université d'Orléans EA1207 USC 1328 Orléans France
Zobrazit více v PubMed
Achour Z., Archipiano M., Barneche F., Baurens C., Beckert M., Ben C., et al. (2017). Epigenetics in plant breeding, in Article de positionnement du Groupement d'intérêt scientifique Biotechnologies vertes et de l'Alliance nationale de recherche pour l'environnement. Available online at: www.gisbiotechnologiesvertes.com/fr/publications/position-paper-epigenetics-in-plant-breeding (accessed February 13, 2017)
Aichinger E., Kornet N., Friedrich T., Laux T. (2012). Plant stem cell niches. Ann. Rev. Plant Biol. 63, 615–636. 10.1146/annurev-arplant-042811-105555 PubMed DOI
Alexandre C., Möller-Steinbach Y., Schönrock N., Gruissem W., Hennig L. (2009). Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol. Plant 2, 675–687. 10.1093/mp/ssp012 PubMed DOI
Archacki R., Buszewicz D., Sarnowski T. J., Sarnowska E., Rolicka A. T., Tohge T., et al. . (2013). BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in Arabidopsis. PLoS ONE 8:e58588. 10.1371/journal.pone.0058588 PubMed DOI PMC
Barrero J. M., Gonzalez-Bayon R., del Pozo J. C., Ponce M. R., Micol J. L. (2007). INCURVATA2 encodes the catalytic subunit of DNA polymerase and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19, 2822–2838. 10.1105/tpc.107.054130 PubMed DOI PMC
Baubec T., Finke A., Mittelsten Scheid O., Pecinka A. (2014). Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 15, 446–452. 10.1002/embr.201337915 PubMed DOI PMC
Berry S., Hartley M., Olsson T. S. G., Dean C., Howard M. (2015). Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. ELife 4:e07205. 10.7554/eLife.07205 PubMed DOI PMC
Bratzel F., López-Torrejón G., Koch M., Del Pozo J. C., Calonje M. (2010). Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr. Biol. 20, 1853–1859. 10.1016/j.cub.2010.09.046 PubMed DOI
Campos-Rivero G., Osorio-Montalvo P., Sánchez-Borges R., Us-Camas R., Duarte-Aké F., De-la-Pe-a C. (2017). Plant hormone signaling in flowering: an epigenetic point of view. J. Plant Physiol. 214, 16–27. 10.1016/j.jplph.2017.03.018 PubMed DOI
Cao X., He Z., Guo L., Liu X. (2015). Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems: figure 1. Plant Physiol. 168, 1189–1196. 10.1104/pp.15.00230 PubMed DOI PMC
Chanvivattana Y., Bishopp A., Schubert D., Stock C., Moon Y.-H., Sung Z. R., et al. . (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276. 10.1242/dev.01400 PubMed DOI
Chen D., Molitor A., Liu C., Shen W.-H. (2010). The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 20, 1332–1344. 10.1038/cr.2010.151 PubMed DOI
Chen D., Molitor A. M., Xu L., Shen W.-H. (2016). Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes. BMC Biol. 14:112. 10.1186/s12915-016-0336-4 PubMed DOI PMC
Conde D., Le Gac A.-L., Perales M., Dervinis C., Kirst M., Maury S., et al. (2017). Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break: Role of active DNA demethylase in trees' bud break. Plant Cell Environ. 40, 2236–2249. 10.1111/pce.13019 PubMed DOI
Dodsworth S. (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev. Biol. 336, 1–9. 10.1016/j.ydbio.2009.09.031 PubMed DOI
Figueiredo D. D., Batista R. A., Roszak P. J., Hennig L., Köhler C. (2016). Auxin production in the endosperm drives seed coat development in Arabidopsis. ELife 5:e20542. 10.7554/eLife.20542 PubMed DOI PMC
Figueiredo D. D., Batista R. A., Roszak P. J., Köhler C. (2015). Auxin production couples endosperm development to fertilization. Nat. Plants 1:15184. 10.1038/nplants.2015.184 PubMed DOI
Figueiredo D. D., Köhler C. (2018). Auxin: a molecular trigger of seed development. Genes Dev. 32, 479–490. 10.1101/gad.312546.118 PubMed DOI PMC
Gaillochet C., Lohmann J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development 142, 2237–2249. 10.1242/dev.117614 PubMed DOI PMC
Galinha C., Hofhuis H., Luijten M., Willemsen V., Blilou I., Heidstra R., et al. . (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053–1057. 10.1038/nature06206 PubMed DOI
Gallusci P., Dai Z., Génard M., Gauffretau A., Leblanc-Fournier N., Richard-Molard C., et al. . (2017). Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci. 22, 610–623. 10.1016/j.tplants.2017.04.009 PubMed DOI
Guo J.-E., Hu Z., Yu X., Li A., Li F., Wang Y., et al. . (2018). A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep. 37, 125–135. 10.1007/s00299-017-2211-3 PubMed DOI
Han S.-K., Sang Y., Rodrigues A., BIOL425 F2010. Wu M.-F., Rodriguez P. L., et al. . (2012). The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell. 24, 4892–4906. 10.1105/tpc.112.105114 PubMed DOI PMC
Hébrard C., Peterson D. G., Willems G., Delaunay A., Jesson B., Lefèbvre M., et al. . (2016). Epigenomics and bolting tolerance in sugar beet genotypes. J. Exp. Botany 67, 207–225. 10.1093/jxb/erv449 PubMed DOI PMC
Hepworth J., Dean C. (2015). Flowering Locus C's lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol. 168, 1237–1245. 10.1104/pp.15.00496 PubMed DOI PMC
Ikeuchi M., Iwase A., Rymen B., Harashima H., Shibata M., Ohnuma M., et al. . (2015). PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat. Plants 1:15089. 10.1038/nplants.2015.89 PubMed DOI
Jaskiewicz M., Conrath U., Peterhänsel C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12, 50–55. 10.1038/embor.2010.186 PubMed DOI PMC
Kaya H., Shibahara K., Taoka K., Iwabuchi M., Stillman B., Araki T. (2001). FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142. 10.1016/S0092-8674(01)00197-0 PubMed DOI
Kwon C. S. (2005). WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev. 19, 992–1003. 10.1101/gad.1276305 PubMed DOI PMC
Lachowiec J., Queitsch C., Kliebenstein D. J. (2016). Molecular mechanisms governing differential robustness of development and environmental responses in plants. Ann. Botany 117, 795–809. 10.1093/aob/mcv151 PubMed DOI PMC
Lafon-Placette C., Le Gac A.-L., Chauveau D., Segura V., Delaunay A., Lesage-Descauses M.-C., et al. . (2018). Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. J. Exp. Botany 69, 537–551. 10.1093/jxb/erx409 PubMed DOI
Lafos M., Kroll P., Hohenstatt M. L., Thorpe F. L., Clarenz O., Schubert D. (2011). Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 7:e1002040. 10.1371/journal.pgen.1002040 PubMed DOI PMC
Lämke J., Bäurle I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18:124. 10.1186/s13059-017-1263-6 PubMed DOI PMC
Latzel V., Zhang Y., Karlsson Moritz K., Fischer M., Bossdorf O. (2012). Epigenetic variation in plant responses to defence hormones. Ann. Botany 110, 1423–1428. 10.1093/aob/mcs088 PubMed DOI PMC
Laura B., Silvia P., Francesca F., Benedetta S., Carla C. (2018). Epigenetic control of defense genes following MeJA-induced priming in rice (O. sativa). J. Plant Physiol. 228, 166–177. 10.1016/j.jplph.2018.06.007 PubMed DOI
Le Gac A.-L., Lafon-Placette C., Chauveau D., Segura V., Delaunay A., Fichot R., et al. . (2018). Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. J. Exp. Botany 69, 4821–4837. 10.1093/jxb/ery271 PubMed DOI PMC
Li Q.-F., Lu J., Yu J.-W., Zhang C.-Q., He J.-X., Liu Q.-Q. (2018). The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 561–571. 10.1016/j.bbagrm.2018.04.003 PubMed DOI
Li W., Liu H., Cheng Z. J., Su Y. H., Han H. N., Zhang Y., et al. . (2011). DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet. 7:e1002243. 10.1371/journal.pgen.1002243 PubMed DOI PMC
Liu C., Xin Y., Xu L., Cai Z., Xue Y., Liu Y., et al. . (2018). Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev. Cell 44, 348–361.e7. 10.1016/j.devcel.2017.12.002 PubMed DOI
Liu H., Zhang H., Dong Y. X., Hao Y. J., Zhang X. S. (2018). DNA METHYLTRANSFERASE1 -mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis. N. Phytol. 217, 219–232. 10.1111/nph.14814 PubMed DOI
Liu H. C., Lämke J., Lin S., Hung M.-J., Liu K.-M., Charng Y., Bäurle I. (2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J. 95, 401–413. 10.1111/tpj.13958 PubMed DOI
Liu X., Wei X., Sheng Z., Jiao G., Tang S., Luo J., et al. . (2016). Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS ONE 11:e0164748. 10.1371/journal.pone.0164748 PubMed DOI PMC
Mehdi S., Derkacheva M., Ramström M., Kralemann L., Bergquist J., Hennig L. (2016). The WD40 domain protein MSI1 functions in a HDAC complex to fine-tune ABA signaling. Plant Cell 28, 42–54. 10.1105/tpc.15.00763 PubMed DOI PMC
Morao A. K., Bouyer D., Roudier F. (2016). Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. Curr. Opin. Plant Biol. 34, 27–34. 10.1016/j.pbi.2016.07.010 PubMed DOI
Mozgová I., Mu-oz-Viana R., Hennig L. (2017). PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet. 13:e1006562. 10.1371/journal.pgen.1006562 PubMed DOI PMC
Ogas J., Cheng J.-C., Sung Z.R., Somerville C. (1997). Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Sciences 277, 91–94. 10.1126/science.277.5322.91 PubMed DOI
Ogas J., Kaufmann S., Henderson J., Somerville C. (1999). PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 96, 13839–13844. 10.1073/pnas.96.24.13839 PubMed DOI PMC
Oh S., Park S., van Nocker S. (2008). Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet. 4:e1000077. 10.1371/journal.pgen.1000077 PubMed DOI PMC
Ojolo S. P., Cao S., Priyadarshani S. V. G. N., Li W., Yan M., Aslam M., et al. . (2018). Regulation of plant growth and development: a review from a chromatin remodeling perspective. Front. Plant Sci. 9:1232. 10.3389/fpls.2018.01232 PubMed DOI PMC
Oles V., Panchenko A., Smertenko A. (2017). Modeling hormonal control of cambium proliferation. PLoS ONE 12:e0171927. 10.1371/journal.pone.0171927 PubMed DOI PMC
Park J., Oh D.-H., Dassanayake M., Nguyen K. T., Ogas J., Choi G., et al. . (2017). Gibberellin signaling requires chromatin remodeler PICKLE to Promote vegetative growth and phase transitions. Plant Physiol. 173, 1463–1474. 10.1104/pp.16.01471 PubMed DOI PMC
Pavlovic M., Radotic K. (2017). Animal and Plant Stem Cells, Vol. 234 Cham: Springer International Publishing XVII.
Peirats-Llobet M., Han S.-K., Gonzalez-Guzman M., Jeong C. W., Rodriguez L., Belda-Palazon B., et al. . (2016). A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol. Plant 9, 136–147. 10.1016/j.molp.2015.10.003 PubMed DOI
Perrella G., Lopez-Vernaza M. A., Carr C., Sani E., Gossele V., Verduyn C., et al. . (2013). Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25, 3491–3505. 10.1105/tpc.113.114835 PubMed DOI PMC
Pi L., Aichinger E., van der Graaff E., Llavata-Peris C. I., Weijers D., Hennig L., et al. . (2015). Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33, 576–588. 10.1016/j.devcel.2015.04.024 PubMed DOI
Sarnowska E., Gratkowska D. M., Sacharowski S. P., Cwiek P., Tohge T., Fernie A. R., et al. . (2016). The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci. 21, 594–608. 10.1016/j.tplants.2016.01.017 PubMed DOI
Scheres B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8, 345–354. 10.1038/nrm2164 PubMed DOI
Sorin C., Bussell J. D., Camus I., Ljung K., Kowalczyk M., Geiss G., et al. . (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17, 1343–1359. 10.1105/tpc.105.031625 PubMed DOI PMC
Sow M. D., Allona I., Ambroise C., Conde D., Fichot R., Gribkova S., et al. (2018b). Epigenetics in forest trees, in Advances in Botanical Research. Plant Epigenetics Coming of Age for Breeding Applications, Vol. 88 éds Gallusci P., Bucher E., Mirouze M. 387–453. Academic Press, Elsevier; 10.1016/bs.abr.2018.09.003 DOI
Sow M. D., Segura V., Chamaillard S., Jorge V., Delaunay A., Lafon-Placette C., et al. (2018a). Narrow-sense heritability and PST estimates of DNA methylation in three Populus nigra L. populations under contrasting water availability. Tree Genet. Genomes 14:78 10.1007/s11295-018-1293-6 DOI
Springer N. M., Schmitz R. J. (2017). Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 18, 563–575. 10.1038/nrg.2017.45 PubMed DOI
Tanaka M., Kikuchi A., Kamada H. (2008). The Arabidopsis Histone Deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol. 146, 149–161. 10.1104/pp.107.111674 PubMed DOI PMC
Tucker M. R., Laux T. (2007). Connecting the paths in plant stem cell regulation. Trends Cell Biol. 17, 403–410. 10.1016/j.tcb.2007.06.002 PubMed DOI
Wakeel A., Ali I., Khan A. R., Wu M., Upreti S., Liu D., et al. . (2018). Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. Plant Cell Rep. 37, 51–59. 10.1007/s00299-017-2205-1 PubMed DOI
Wang Q., Ci D., Li T., Li P., Song Y., Chen J., et al. . (2016). The role of DNA methylation in xylogenesis in different tissues of poplar. Front. Plant Sci. 7:1003. 10.3389/fpls.2016.01003 PubMed DOI PMC
Wong M. M., Chong G. L., Verslues P. E. (2017). Epigenetics and RNA processing: connections to drought, salt, and ABA?, in Plant Stress Tolerance: Methods and Protocols, ed Sunkar R. (New York, NY: Springer New York; ), 3–21. PubMed
Xiao J., Jin R., Wagner D. (2017). Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants. Genome Biol. 18:88. 10.1186/s13059-017-1228-9 PubMed DOI PMC
Xu L., Shen W.-H. (2008). Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr. Biol. 18, 1966–1971. 10.1016/j.cub.2008.11.019 PubMed DOI
Yadav R. K., Girke T., Pasala S., Xie M., Reddy G. V. (2009). Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc. Natl. Acad. Sci. U.S.A. 106, 4941–4946. 10.1073/pnas.0900843106 PubMed DOI PMC
Yakovlev I. A., Asante D. K. A., Fossdal C. G., Junttila O., Johnsen Ø. (2011). Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci. 180, 132–139. 10.1016/j.plantsci.2010.07.004 PubMed DOI
Yakovlev I. A., Carneros E., Lee Y., Olsen J. E., Fossdal C. G. (2016). Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249. 10.1007/s00425-016-2484-8 PubMed DOI
Yamamuro C., Zhu J.-K., Yang Z. (2016). Epigenetic modifications and plant hormone action. Mol. Plant 9, 57–70. 10.1016/j.molp.2015.10.008 PubMed DOI PMC
Yang S., Li C., Zhao L., Gao S., Lu J., Zhao M., et al. . (2015). The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance. Plant Cell 27, 1670–1680. 10.1105/tpc.15.00091 PubMed DOI PMC
Yu X., Li L., Li L., Guo M., Chory J., Yin Y. (2008). Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 105, 7618–7623. 10.1073/pnas.0802254105 PubMed DOI PMC
Zheng X., Hou H., Zhang H., Yue M., Hu Y., Li L. (2018). Histone acetylation is involved in GA-mediated 45S rDNA decondensation in maize aleurone layers. Plant Cell Rep. 37, 115–123. 10.1007/s00299-017-2207-z PubMed DOI
Zuo J., Niu Q.-W., Frugis G., Chua N.-H. (2002). The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359. 10.1046/j.1365-313X.2002.01289.x PubMed DOI
Plant Growth Regulators in Tree Rooting
Epigenetics for Crop Improvement in Times of Global Change
Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops