Epigenetics for Crop Improvement in Times of Global Change

. 2021 Aug 11 ; 10 (8) : . [epub] 20210811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439998

Grantová podpora
CA19125 European Cooperation in Science and Technology

Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.

Department of Biology University of Florence 50019 Sesto Fiorentino Italy

Department of Molecular Biology and Genetics Institute of Plant Physiology and Genetics Bulgarian Academy of Sciences Acad Georgi Bonchev Str Bldg 21 1113 Sofia Bulgaria

Department of Molecular Life Sciences Technical University of Munich Liesel Beckmann Str 2 85354 Freising Germany

Faculty of Agriculture University of Novi Sad Sq Dositeja Obradovića 8 21000 Novi Sad Serbia

Faculty of Horticulture Mendeleum Institute of Genetics Mendel University in Brno Valtická 334 69144 Lednice Czech Republic

Institute for Advanced Study Technical University of Munich Lichtenberg Str 2a 85748 Garching Germany

Institute of Molecular Cell and Systems Biology College of Medical Veterinary and Life Sciences Bower Building University of Glasgow Glasgow G12 8QQ UK

Institute of Plant Sciences Agricultural Research Organization Volcani Center Rishon LeZion 7505101 Israel

Laboratoire de Biologie des Ligneux et des Grandes Cultures INRAE EA1207 USC1328 Université d'Orléans F 45067 Orléans France

Laboratory of Forest Genetics and Biotechnology Institute of Mediterranean Forest Ecosystems Hellenic Agricultural Organization Dimitra 11528 Athens Greece

Plant and AgriBiosciences Centre Ryan Institute National University of Ireland Galway H91 TK33 Galway Ireland

Pollen Biotechnology of Crop Plants Group Centro de Investigaciones Biológicas Margarita Salas Ramiro Maeztu 9 28040 Madrid Spain

UMR 950 Ecophysiologie Végétale Agronomie et Nutritions N C S UNICAEN INRAE Normandie Université CEDEX F 14032 Caen France

Zobrazit více v PubMed

Smith P., Davis S.J., Creutzig F., Fuss S., Minx J.C., Gabrielle B., Kato E., Jackson R.B., Cowie A., Kriegler E., et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2015;6:42–50. doi: 10.1038/nclimate2870. DOI

Wollenberg E., Richards M., Smith P., Havlík P., Obersteiner M., Tubiello F.N., Herold M., Gerber P., Carter S., Reisinger A., et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Chang. Biol. 2016;22:3859–3864. doi: 10.1111/gcb.13340. PubMed DOI

Frank S., Havlik P., Soussana J.-F., Levesque A., Valin H., Wollenberg E., Kleinwechter U., Fricko O., Gusti M., Herrero M., et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 2017;12:105004. doi: 10.1088/1748-9326/aa8c83. DOI

Ruane A.C., Antle J., Elliott J., Folberth C., Hoogenboom G., Mason-D’Croz D., Müller C., Porter C., Phillips M.M., Raymundo R.M., et al. Biophysical and economic implications for agriculture of +1.5° and +2.0 °C global warming using AgMIP Coordinated Global and Regional Assessments. Clim. Res. 2018;76:17–39. doi: 10.3354/cr01520. PubMed DOI PMC

Van Meijl H., Havlik P., Lotze-Campen H., Stehfest E., Witzke P., Domínguez I.P., Bodirsky B.L., Van Dijk M., Doelman J., Fellmann T., et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 2018;13:064021. doi: 10.1088/1748-9326/aabdc4. DOI

Lobell D., Field C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007;2 doi: 10.1088/1748-9326/2/1/014002. DOI

Zhao C., Liu B., Piao S., Wang X., Lobell D., Huang Y., Huang M., Yao Y., Bassu S., Ciais P., et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA. 2017;114:9326–9331. doi: 10.1073/pnas.1701762114. PubMed DOI PMC

Hartman G.L., West E.D., Herman T.K. Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Secur. 2011;3:5–17. doi: 10.1007/s12571-010-0108-x. DOI

Oerke E.-C. Crop losses to pests. J. Agric. Sci. 2005;144:31–43. doi: 10.1017/S0021859605005708. DOI

Oerke E.-C., Dehne H.-W. Safeguarding production—Losses in major crops and the role of crop protection. Crop. Prot. 2004;23:275–285. doi: 10.1016/j.cropro.2003.10.001. DOI

Ojolo S.P., Cao S., Priyadarshani S.V.G.N., Li W., Yan M., Aslam M., Zhao H., Qin Y. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. Front. Plant. Sci. 2018;9:1232. doi: 10.3389/fpls.2018.01232. PubMed DOI PMC

Agarwal G., Kudapa H., Ramalingam A., Choudhary D., Sinha P., Garg V., Singh V.K., Patil G.B., Pandey M.K., Nguyen H.T., et al. Epigenetics and epigenomics: Underlying mechanisms, relevance, and implications in crop improvement. Funct. Integr. Genom. 2020;20:739–761. doi: 10.1007/s10142-020-00756-7. PubMed DOI

Mercé C., Bayer P.E., Fernandez C.T., Batley J., Edwards D. Induced Methylation in Plants as a Crop Improvement Tool: Progress and Perspectives. Agronomy. 2020;10:1484. doi: 10.3390/agronomy10101484. DOI

Kapazoglou A., Tani E., Avramidou E.V., Abraham E.M., Gerakari M., Megariti S., Doupis G., Doulis A.G. Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. Front. Plant. Sci. 2021;11 doi: 10.3389/fpls.2020.613004. PubMed DOI PMC

Zhang H., Lang Z., Zhu J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018;19:489–506. doi: 10.1038/s41580-018-0016-z. PubMed DOI

Bodadilla R. Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives. IntechOpen; London, UK: 2016. Histone Methylation—A Cornerstone for Plant Responses to Environmental Stresses?

Bartels A., Han Q., Nair P., Stacey L., Gaynier H., Mosley M., Huang Q.Q., Pearson J.K., Hsieh T.-F., An Y.-Q.C., et al. Dynamic DNA Methylation in Plant Growth and Development. Int. J. Mol. Sci. 2018;19:2144. doi: 10.3390/ijms19072144. PubMed DOI PMC

Singh J., Mishra V., Wang F., Huang H.-Y., Pikaard C.S. Reaction Mechanisms of Pol IV, RDR2, and DCL3 Drive RNA Channeling in the siRNA-Directed DNA Methylation Pathway. Mol. Cell. 2019;75:576–589.e5. doi: 10.1016/j.molcel.2019.07.008. PubMed DOI PMC

Yang X., Kundariya H., Xu Y.-Z., Sandhu A., Yu J., Hutton S.F., Zhang M., MacKenzie S.A. MutS HOMOLOG1-Derived Epigenetic Breeding Potential in Tomato. Plant. Physiol. 2015;168:222–232. doi: 10.1104/pp.15.00075. PubMed DOI PMC

Kundariya H., Yang X., Morton K., Sanchez R., Axtell M.J., Hutton S.F., Fromm M., Mackenzie S.A. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-19140-x. PubMed DOI PMC

Raju S.K.K., Shao M., Sanchez R., Xu Y., Sandhu A., Graef G., Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant. Biotechnol. J. 2018;16:1836–1847. doi: 10.1111/pbi.12919. PubMed DOI PMC

Pecinka A., Chevalier C., Colas I., Kalantidis K., Varotto S., Krugman T., Michailidis C., Vallés M.-P., Muñoz A., Pradillo M. Chromatin dynamics during interphase and cell division: Similarities and differences between model and crop plants. J. Exp. Bot. 2019;71:5205–5222. doi: 10.1093/jxb/erz457. PubMed DOI

Song J., Henry H.A., Tian L. Brachypodium histone deacetylase BdHD1 positively regulates ABA and drought stress responses. Plant. Sci. 2019;283:355–365. doi: 10.1016/j.plantsci.2019.03.009. PubMed DOI

Tsikou D., Yan Z., Holt D.B., Abel N.B., Reid D.E., Madsen L.H., Bhasin H., Sexauer M., Stougaard J., Markmann K. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science. 2018;362:233–236. doi: 10.1126/science.aat6907. PubMed DOI

Boycheva I., Vassileva V., Revalska M., Zehirov G., Iantcheva A. Different functions of the histone acetyltransferase HAC1 gene traced in the model species Medicago truncatula, Lotus japonicus and Arabidopsis thaliana. Protoplasma. 2016;254:697–711. doi: 10.1007/s00709-016-0983-x. PubMed DOI

Rose R.J. Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. Front. Plant. Sci. 2019;10:267. doi: 10.3389/fpls.2019.00267. PubMed DOI PMC

Deng X., Song X., Wei L., Liu C., Cao X. Epigenetic regulation and epigenomic landscape in rice. Natl. Sci. Rev. 2016;3:309–327. doi: 10.1093/nsr/nww042. DOI

Candaele J., Demuynck K., Mosoti D., Beemster G., Inzé D., Nelissen H. Differential Methylation during Maize Leaf Growth Targets Developmentally Regulated Genes. Plant. Physiol. 2014;164:1350–1364. doi: 10.1104/pp.113.233312. PubMed DOI PMC

Huang J., Lynn J.S., Schulte L., Vendramin S., McGinnis K. Chapter Two—Epigenetic Control of Gene Expression in Maize. In: Galluzzi L., editor. International Review of Cell and Molecular Biology. Volume 328. Academic Press; Cambridge, MA, USA: 2017. pp. 25–48. PubMed

Hu Z., Han Z., Song N., Chai L., Yao Y., Peng H., Ni Z., Sun Q. Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum) N. Phytol. 2013;197:1344–1352. doi: 10.1111/nph.12131. PubMed DOI

An Y.-Q.C., Goettel W., Han Q., Bartels A., Liu Z., Xiao W. Dynamic Changes of Genome-Wide DNA Methylation during Soybean Seed Development. Sci. Rep. 2017;7:1–14. doi: 10.1038/s41598-017-12510-4. PubMed DOI PMC

Yao N., Schmitz R.J., Johannes F. Epimutations define a fast-ticking molecular clock in plants. Trends Genet. 2021 doi: 10.1016/j.tig.2021.04.010. PubMed DOI PMC

Weigel D., Colot V. Epialleles in plant evolution. Genome Biol. 2012;13:1–6. doi: 10.1186/gb-2012-13-10-249. PubMed DOI PMC

Johannes F., Schmitz R.J. Spontaneous epimutations in plants. N. Phytol. 2018;221:1253–1259. doi: 10.1111/nph.15434. PubMed DOI

Ossowski S., Schneeberger K., Lucas-Lledó J.I., Warthmann N., Clark R.M., Shaw R.G., Weigel D., Lynch M. The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana. Science. 2009;327:92–94. doi: 10.1126/science.1180677. PubMed DOI PMC

Denkena J., Johannes F., Colomé-Tatché M. Region-level epimutation rates in Arabidopsis thaliana. Heredity. 2021:1–13. doi: 10.1038/s41437-021-00441-w. PubMed DOI PMC

Monroe J.G., Srikant T., Carbonell-Bejerano P., Exposito-Alonso M., Weng M.-L., Rutter M.T., Fenster C.B., Weigel D. Mutation Bias Shapes Gene Evolution in Arabidopsis Thaliana. bioRxiv. 2020 doi: 10.1101/2020.06.17.156752. DOI

Hofmeister B.T., Denkena J., Colomé-Tatché M., Shahryary Y., Hazarika R., Grimwood J., Mamidi S., Jenkins J., Grabowski P.P., Sreedasyam A., et al. A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol. 2020;21:1–27. doi: 10.1186/s13059-020-02162-5. PubMed DOI PMC

Hofmeister B., Lee K., Rohr N.A., Hall D., Schmitz R.J. Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol. 2017;18:1–16. doi: 10.1186/s13059-017-1288-x. PubMed DOI PMC

Feng J.-W., Lu Y., Shao L., Zhang J., Li H., Chen L.-L. Phasing analysis of the transcriptome and epigenome in a rice hybrid reveals the inheritance and difference in DNA methylation and allelic transcription regulation. Plant. Commun. 2021:100185. doi: 10.1016/j.xplc.2021.100185. PubMed DOI PMC

Bewick A.J., Ji L., Niederhuth C.E., Willing E.-M., Hofmeister B.T., Shi X., Wang L., Lu Z., Rohr N.A., Hartwig B., et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. USA. 2016;113:9111–9116. doi: 10.1073/pnas.1604666113. PubMed DOI PMC

Baduel P., Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos. Trans. Soc. Biol. Sci. 2021;376:20200123. doi: 10.1098/rstb.2020.0123. PubMed DOI PMC

Wendte J.M., Zhang Y., Dizaji Y.S., Shi X., Hazarika R.R., Shahryary Y., Johannes F., Schmitz R.J. Epimutations are associated with CHROMOMETHYLASE 3-induced de novo DNA methylation. eLife. 2019;8:e47891. doi: 10.7554/eLife.47891. PubMed DOI PMC

Ganguly D.R., Crisp P.A., Eichten S.R., Pogson B.J. The Arabidopsis DNA Methylome Is Stable under Transgenerational Drought Stress. Plant. Physiol. 2017;175:1893–1912. doi: 10.1104/pp.17.00744. PubMed DOI PMC

Zheng X., Chen L., Xia H., Wei H., Lou Q., Li M., Li T., Luo L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci. Rep. 2017;7:39843. doi: 10.1038/srep39843. PubMed DOI PMC

Wibowo A., Becker C., Marconi G., Durr J., Price J., Hagmann J., Papareddy R., Putra H., Kageyama J., Becker J., et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife. 2016;5:e13546. doi: 10.7554/eLife.13546. PubMed DOI PMC

Ferreira L.J., Donoghue M.T.A., Barros P.M., Saibo N.J., Santos A.P., Oliveira M.M. Uncovering Differentially Methylated Regions (DMRs) in a Salt-Tolerant Rice Variety under Stress: One Step towards New Regulatory Regions for Enhanced Salt Tolerance. Epigenomes. 2019;3:4. doi: 10.3390/epigenomes3010004. PubMed DOI PMC

Lang-Mladek C., Popova O., Kiok K., Berlinger M., Rakic B., Aufsatz W., Jonak C., Hauser M.-T., Luschnig C. Transgenerational Inheritance and Resetting of Stress-Induced Loss of Epigenetic Gene Silencing in Arabidopsis. Mol. Plant. 2010;3:594–602. doi: 10.1093/mp/ssq014. PubMed DOI PMC

Migicovsky Z., Kovalchuk I. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. Plant. Signal. Behav. 2014;9:e976490. doi: 10.4161/15592324.2014.976490. PubMed DOI PMC

Kawakatsu T., Huang S.-S.C., Jupe F., Sasaki E., Schmitz R., Urich M.A., Castanon R., Nery J.R., Barragan C., He Y., et al. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell. 2016;166:492–505. doi: 10.1016/j.cell.2016.06.044. PubMed DOI PMC

Tang X., Liu G., Zhou J., Ren Q., You Q., Tian L., Xin X., Zhong Z., Liu B., Zheng X., et al. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 2018;19:1–13. doi: 10.1186/s13059-018-1458-5. PubMed DOI PMC

Schmitz R., He Y., Valdés-López O., Khan S.M., Joshi T., Urich M.A., Nery J.R., Diers B., Xu D., Stacey G., et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013;23:1663–1674. doi: 10.1101/gr.152538.112. PubMed DOI PMC

Cokus S.J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Pradhan S., Nelson S.F., Pellegrini M., Jacobsen S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nat. Cell Biol. 2008;452:215–219. doi: 10.1038/nature06745. PubMed DOI PMC

Lister R., Omalley R., Tonti-Filippini J., Gregory B.D., Berry C.C., Millar A.H., Ecker J.R. Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell. 2008;133:523–536. doi: 10.1016/j.cell.2008.03.029. PubMed DOI PMC

Widman N., Feng S., Jacobsen S.E., Pellegrini M. Epigenetic differences between shoots and roots in Arabidopsis reveals tissue-specific regulation. Epigenetics. 2013;9:236–242. doi: 10.4161/epi.26869. PubMed DOI PMC

Karan R., DeLeon T., Biradar H., Subudhi P.K. Salt Stress Induced Variation in DNA Methylation Pattern and Its Influence on Gene Expression in Contrasting Rice Genotypes. PLoS ONE. 2012;7:e40203. doi: 10.1371/journal.pone.0040203. PubMed DOI PMC

Lafos M., Kroll P., Hohenstatt M.L., Thorpe F.L., Clarenz O., Schubert D. Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation. PLoS Genet. 2011;7:e1002040. doi: 10.1371/journal.pgen.1002040. PubMed DOI PMC

Baubec T., Finke A., Scheid O.M., Pecinka A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 2014;15:446–452. doi: 10.1002/embr.201337915. PubMed DOI PMC

Hossain S., Kawakatsu T., Kim K.D., Zhang N., Nguyen C., Khan S.M., Batek J.M., Joshi T., Schmutz J., Grimwood J., et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. N. Phytol. 2017;214:808–819. doi: 10.1111/nph.14421. PubMed DOI

Placette C.L., Faivre-Rampant P., Delaunay A., Street N., Brignolas F., Maury S. Methylome of DN ase I sensitive chromatin in P opulus trichocarpa shoot apical meristematic cells: A simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. N. Phytol. 2012;197:416–430. doi: 10.1111/nph.12026. PubMed DOI

Hsieh P.-H., He S., Buttress T., Gao H., Couchman M., Fischer R.L., Zilberman D., Feng X. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proc. Natl. Acad. Sci. USA. 2016;113:15132–15137. doi: 10.1073/pnas.1619074114. PubMed DOI PMC

Kordyum E.L., Mosyakin S.L. Endosperm of Angiosperms and Genomic Imprinting. Life. 2020;10:104. doi: 10.3390/life10070104. PubMed DOI PMC

Hébrard C., Peterson D., Willems G., Delaunay A., Jesson B., Lefèbvre M., Barnes S., Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. J. Exp. Bot. 2015;67:207–225. doi: 10.1093/jxb/erv449. PubMed DOI PMC

Conde D., Le Gac A., Perales M., Dervinis C., Kirst M., Maury S., González-Melendi P., Allona I. Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break. Plant. Cell Environ. 2017;40:2236–2249. doi: 10.1111/pce.13019. PubMed DOI

Le Gac A.-L., Placette C.L., Chauveau D., Segura V., Delaunay A., Fichot R., Marron N., Le Jan I., Berthelot A., Bodineau G., et al. Winter-dormant shoot apical meristem in poplar trees shows environmental epigenetic memory. J. Exp. Bot. 2018;69:4821–4837. doi: 10.1093/jxb/ery271. PubMed DOI PMC

Sow M.D., Allona I., Ambroise C., Conde D., Fichot R., Gribkova S., Jorge V., Le-Provost G., Pâques L., Plomion C., et al. Chapter Twelve—Epigenetics in Forest Trees: State of the Art and Potential Implications for Breeding and Management in a Context of Climate Change. In: Mirouze M., Bucher E., Gallusci P., editors. Advances in Botanical Research. Volume 88. Academic Press; London, UK: 2018. pp. 387–453. Plant Epigenetics Coming of Age for Breeding Applications.

Le Gac A.-L., Lafon-Placette C., Delaunay A., Maury S. Developmental, genetic and environmental variations of global DNA methylation in the first leaves emerging from the shoot apical meristem in poplar trees. Plant. Signal. Behav. 2019;14:1596717. doi: 10.1080/15592324.2019.1596717. PubMed DOI PMC

Whittaker C., Dean C. The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annu. Rev. Cell Dev. Biol. 2017;33:555–575. doi: 10.1146/annurev-cellbio-100616-060546. PubMed DOI

Maury S., Sow M.D., Le Gac A.-L., Genitoni J., Placette C.L., Mozgova I. Phytohormone and Chromatin Crosstalk: The Missing Link for Developmental Plasticity? Front. Plant. Sci. 2019;10:395. doi: 10.3389/fpls.2019.00395. PubMed DOI PMC

Eichten S.R., Briskine R., Song J., Li Q., Swanson-Wagner R., Hermanson P.J., Waters A.J., Starr E., West P.T., Tiffin P., et al. Epigenetic and Genetic Influences on DNA Methylation Variation in Maize Populations. Plant. Cell. 2013;25:2783–2797. doi: 10.1105/tpc.113.114793. PubMed DOI PMC

De Bernonville T.D., Maury S., Delaunay A., Daviaud C., Chaparro C., Tost J., O’Connor S.E., Courdavault V. Developmental Methylome of the Medicinal Plant Catharanthus roseus Unravels the Tissue-Specific Control of the Monoterpene Indole Alkaloid Pathway by DNA Methylation. Int. J. Mol. Sci. 2020;21:6028. doi: 10.3390/ijms21176028. PubMed DOI PMC

Schmid M.W., Giraldo-Fonseca A., Rövekamp M., Smetanin D., Bowman J.L., Grossniklaus U. Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha. Genome Biol. 2018;19:1–17. doi: 10.1186/s13059-017-1383-z. PubMed DOI PMC

Van Dooren T.J.M., Silveira A.B., Gilbault E., Jiménez-Gómez J.M., Martin A., Bach L., Tisné S., Quadrana L., Loudet O., Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. J. Exp. Bot. 2020;71:3588–3602. doi: 10.1093/jxb/eraa132. PubMed DOI PMC

Bhatia H., Khemka N., Jain M., Garg R. Genome-wide bisulphite-sequencing reveals organ-specific methylation patterns in chickpea. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-27979-w. PubMed DOI PMC

Liu R., How-Kit A., Stammitti L., Teyssier E., Rolin D., Mortain-Bertrand A., Halle S., Liu M., Kong J., Wu C., et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl. Acad. Sci. USA. 2015;112:10804–10809. doi: 10.1073/pnas.1503362112. PubMed DOI PMC

Lang Z., Wang Y., Tang K., Tang D., Datsenka T., Cheng J., Zhang Y., Handa A.K., Zhu J.-K. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl. Acad. Sci. USA. 2017;114:E4511–E4519. doi: 10.1073/pnas.1705233114. PubMed DOI PMC

Huang H., Liu R., Niu Q., Tang K., Zhang B., Zhang H., Chen K., Zhu J.-K., Lang Z. Global increase in DNA methylation during orange fruit development and ripening. Proc. Natl. Acad. Sci. USA. 2019;116:1430–1436. doi: 10.1073/pnas.1815441116. PubMed DOI PMC

Xu J., Chen G., Hermanson P.J., Xu Q., Sun C., Chen W., Kan Q., Li M., Crisp P., Yan J., et al. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol. 2019;20:243. doi: 10.1186/s13059-019-1859-0. PubMed DOI PMC

McKey D., Elias M., Pujol B., Duputié A. The evolutionary ecology of clonally propagated domesticated plants. N. Phytol. 2010;186:318–332. doi: 10.1111/j.1469-8137.2010.03210.x. PubMed DOI

Latutrie M., Gourcilleau D., Pujol B. Epigenetic variation for agronomic improvement: An opportunity for vegetatively propagated crops. Am. J. Bot. 2019;106:1281–1284. doi: 10.1002/ajb2.1357. PubMed DOI PMC

Nybom H., Lācis G. Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. Plants. 2021;10:415. doi: 10.3390/plants10020415. PubMed DOI PMC

Wibowo A., Becker C., Durr J., Price J., Spaepen S., Hilton S., Putra H., Papareddy R., Saintain Q., Harvey S., et al. Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc. Natl. Acad. Sci. USA. 2018;115:E9145–E9152. doi: 10.1073/pnas.1805371115. PubMed DOI PMC

Taagen E., Bogdanove A.J., Sorrells M.E. Counting on Crossovers: Controlled Recombination for Plant Breeding. Trends Plant. Sci. 2020;25:455–465. doi: 10.1016/j.tplants.2019.12.017. PubMed DOI

Fei Q., Yang L., Liang W., Zhang D., Meyers B.C. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. J. Exp. Bot. 2016;67:6037–6049. doi: 10.1093/jxb/erw361. PubMed DOI PMC

Zhai J., Zhang H., Arikit S., Huang K., Nan G.-L., Walbot V., Meyers B.C. Spatiotemporally dynamic, cell-type–dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc. Natl. Acad. Sci. USA. 2015;112:3146–3151. doi: 10.1073/pnas.1418918112. PubMed DOI PMC

Howell M.D., Fahlgren N., Chapman E.J., Cumbie J.S., Sullivan C.M., Givan S., Kasschau K.D., Carrington J.C. Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. Plant. Cell. 2007;19:926–942. doi: 10.1105/tpc.107.050062. PubMed DOI PMC

Zhu H., Xia R., Zhao B., An Y.-Q., Dardick C.D., Callahan A.M., Liu Z. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant. Biol. 2012;12:149. doi: 10.1186/1471-2229-12-149. PubMed DOI PMC

Shilo S., Melamed-Bessudo C., Dorone Y., Barkai N., Levy A.A. DNA Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin Regions in Arabidopsis. Plant. Cell. 2015;27:2427–2436. doi: 10.1105/tpc.15.00391. PubMed DOI PMC

Yelina N.E., Lambing C., Hardcastle T.J., Zhao X., Santos B., Henderson I. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 2015;29:2183–2202. doi: 10.1101/gad.270876.115. PubMed DOI PMC

Mirouze M., Lieberman-Lazarovich M., Aversano R., Bucher E., Nicolet J., Reinders J., Paszkowski J. Loss of DNA methylation affects the recombination landscape in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2012;109:5880–5885. doi: 10.1073/pnas.1120841109. PubMed DOI PMC

Choi K., Zhao X., Tock A.J., Lambing C., Underwood C., Hardcastle T.J., Serra H., Kim J., Cho H.S., Kim J., et al. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 2018;28:532–546. doi: 10.1101/gr.225599.117. PubMed DOI PMC

Higo H., Tahir M., Takashima K., Miura A., Watanabe K., Tagiri A., Ugaki M., Ishikawa R., Eiguchi M., Kurata N., et al. DDM1 (Decrease in DNA Methylation) genes in rice (Oryza sativa) Mol. Genet. Genom. 2012;287:785–792. doi: 10.1007/s00438-012-0717-5. PubMed DOI

Liu H., Nonomura K.-I. Histone H3 modifications are widely reprogrammed during male meiosis I in rice dependently on MEL1 Argonaute protein. J. Cell Sci. 2016;129:3553–3561. doi: 10.1242/jcs.184937. PubMed DOI

Dukowic-Schulze S., Liu C., Chen C. Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction. Plant. Cell Rep. 2017;37:11–16. doi: 10.1007/s00299-017-2222-0. PubMed DOI

Nonomura K.-I. Small RNA pathways responsible for non-cell-autonomous regulation of plant reproduction. Plant. Reprod. 2018;31:21–29. doi: 10.1007/s00497-018-0321-x. PubMed DOI

Solís M.-T., Rodríguez-Serrano M., Meijón M., Canal-Villanueva M.J.F., Cifuentes A., Risueño M.C., Testillano P.S. DNA methylation dynamics and MET1a-like gene expression changes during stress-induced pollen reprogramming to embryogenesis. J. Exp. Bot. 2012;63:6431–6444. doi: 10.1093/jxb/ers298. PubMed DOI PMC

Calarco J.P., Borges F., Donoghue M.T., Van Ex F., Jullien P.E., Lopes T., Gardner R., Berger F., Feijó J., Becker J., et al. Reprogramming of DNA Methylation in Pollen Guides Epigenetic Inheritance via Small RNA. Cell. 2012;151:194–205. doi: 10.1016/j.cell.2012.09.001. PubMed DOI PMC

Matzke M.A., Mosher R. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI

Olmedo-Monfil V., Duran-Figueroa N., Arteaga-Vazquez M.A., Demesa-Arevalo E., Autran D., Grimanelli D., Slotkin R.K., Martienssen R.A., Vielle-Calzada J.-P. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nat. Cell Biol. 2010;464:628–632. doi: 10.1038/nature08828. PubMed DOI PMC

Chang Y., Zhu C., Jiang J., Zhang H., Zhu J., Duan C. Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant. Biol. 2019;62:563–580. doi: 10.1111/jipb.12901. PubMed DOI

Song Z., Liu J., Han J. Chromatin remodeling factors regulate environmental stress responses in plants. J. Integr. Plant. Biol. 2021;63:438–450. doi: 10.1111/jipb.13064. PubMed DOI

Ramos-Cruz D., Troyee A.N., Becker C. Epigenetics in plant organismic interactions. Curr. Opin. Plant. Biol. 2021;61:102060. doi: 10.1016/j.pbi.2021.102060. PubMed DOI

McCue A.D., Panda K., Nuthikattu S., Choudury S.G., Thomas E.N., Slotkin R.K. ARGONAUTE 6 bridges transposable element m RNA -derived si RNA s to the establishment of DNA methylation. EMBO J. 2014;34:20–35. doi: 10.15252/embj.201489499. PubMed DOI PMC

Bokszczanin K.L., Fragkostefanakis S., Bostan H., Bovy A., Chaturvedi P., Chiusano M.L., Firon N., Iannacone R., Jegadeesan S., Klaczynskid K., et al. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant. Sci. 2013;4:315. doi: 10.3389/fpls.2013.00315. PubMed DOI PMC

Bokszczanin K.L., Krezdorn N., Fragkostefanakis S., Müller S., Rycak L., Chen Y., Hoffmeier K., Kreutz J., Paupière M.J., Chaturvedi P., et al. Identification of novel small ncRNAs in pollen of tomato. BMC Genom. 2015;16:714. doi: 10.1186/s12864-015-1901-x. PubMed DOI PMC

Pecinka A., Scheid O.M. Stress-Induced Chromatin Changes: A Critical View on Their Heritability. Plant. Cell Physiol. 2012;53:801–808. doi: 10.1093/pcp/pcs044. PubMed DOI PMC

Cubas P., Vincent C., Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. Nat. Cell Biol. 1999;401:157–161. doi: 10.1038/43657. PubMed DOI

Ong-Abdullah M., Ordway J.M., Jiang N., Ooi S.-E., Kok S.-Y., Sarpan N., Azimi N., Hashim A.T., Ishak Z., Rosli S.K., et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nat. Cell Biol. 2015;525:533–537. doi: 10.1038/nature15365. PubMed DOI PMC

Zhang L., Cheng Z., Qin R., Qiu Y., Wang J.-L., Cui X., Gu L., Zhang X., Guo X., Wang D., et al. Identification and Characterization of an Epi-Allele of FIE1 Reveals a Regulatory Linkage between Two Epigenetic Marks in Rice. Plant. Cell. 2012;24:4407–4421. doi: 10.1105/tpc.112.102269. PubMed DOI PMC

Zhang X., Sun J., Cao X., Song X. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice. Plant. Physiol. 2015;169:2118–2128. doi: 10.1104/pp.15.00836. PubMed DOI PMC

Martin A., Troadec C., Boualem A., Rajab M., Fernandez R., Morin H., Pitrat M., Dogimont C., Bendahmane A. A transposon-induced epigenetic change leads to sex determination in melon. Nat. Cell Biol. 2009;461:1135–1138. doi: 10.1038/nature08498. PubMed DOI

Miura K., Agetsuma M., Kitano H., Yoshimura A., Matsuoka M., Jacobsen S.E., Ashikari M. A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc. Natl. Acad. Sci. USA. 2009;106:11218–11223. doi: 10.1073/pnas.0901942106. PubMed DOI PMC

Manning K., Tor M., Poole M., Hong Y., Thompson A., King G., Giovannoni J.J., Seymour G. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006;38:948–952. doi: 10.1038/ng1841. PubMed DOI

Bender J., Fink G.R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell. 1995;83:725–734. doi: 10.1016/0092-8674(95)90185-X. PubMed DOI

Quadrana L., Almeida J., Asís R., Duffy T., Dominguez P.G., Bermudez L.F., Conti G., Da Silva J.V.C., Peralta I.E., Colot V., et al. Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat. Commun. 2014;5:4027. doi: 10.1038/ncomms5027. PubMed DOI

Silveira A.B., Trontin C., Cortijo S., Barau J., Del-Bem L.-E., Loudet O., Colot V., Vincentz M. Extensive Natural Epigenetic Variation at a De Novo Originated Gene. PLoS Genet. 2013;9:e1003437. doi: 10.1371/journal.pgen.1003437. PubMed DOI PMC

He L., Wu W., Zinta G., Yang L., Wang D., Liu R., Zhang H., Zheng Z., Huang H., Zhang Q., et al. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-02839-3. PubMed DOI PMC

Springer N.M. Epigenetics and crop improvement. Trends Genet. 2013;29:241–247. doi: 10.1016/j.tig.2012.10.009. PubMed DOI

Springer N.M., Schmitz R. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet. 2017;18:563–575. doi: 10.1038/nrg.2017.45. PubMed DOI

Mondal P., Natesh J., Penta D., Meeran S.M. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin. Cancer Biol. 2020 doi: 10.1016/j.semcancer.2020.12.006. PubMed DOI

Stresemann C., Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer. 2008;123:8–13. doi: 10.1002/ijc.23607. PubMed DOI

Yoo C., Cheng J., Jones P. Zebularine: A new drug for epigenetic therapy. Biochem. Soc. Trans. 2004;32:910–912. doi: 10.1042/BST0320910. PubMed DOI

Baránek M., Otmar M., Krečmerová M., Eichmeier A., Moudrá J., Mynarzová Z. Effect of Different DNA Demethylating Agents on in vitro Cultures of Peach Rootstock GF 677. Not. Bot. Horti Agrobot. Cluj-Napoca. 2019;47 doi: 10.15835/nbha47311373. DOI

Chen R., Chen X., Huo W., Zheng S., Lin Y., Lai Z. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in longan. J. Hortic. Sci. Biotechnol. 2020;96:311–323. doi: 10.1080/14620316.2020.1847695. DOI

Quinga L.A.P., Fraga H., Vieira L.D.N., Guerra M.P. Epigenetics of long-term somatic embryogenesis in Theobroma cacao L.: DNA methylation and recovery of embryogenic potential. Plant. Cell Tissue Organ. Cult. 2017;131:295–305. doi: 10.1007/s11240-017-1284-6. DOI

Fraga H., Vieira L.D.N., Caprestano C.A., Steinmacher D.A., Micke G.A., Spudeit D.A., Pescador R., Guerra M.P. 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant. Cell Rep. 2012;31:2165–2176. doi: 10.1007/s00299-012-1327-8. PubMed DOI

Nowicka A., Juzoń K., Krzewska M., Dziurka M., Dubas E., Kopeć P., Zieliński K., Żur I. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant. Sci. 2019;287:110189. doi: 10.1016/j.plantsci.2019.110189. PubMed DOI

Solís M.-T., El-Tantawy A.A., Cano V., Risueño M.C., Testillano P.S. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front. Plant. Sci. 2015;6:472. doi: 10.3389/fpls.2015.00472. PubMed DOI PMC

Zhao Q., Du Y., Wang H., Rogers H.J., Yu C., Liu W., Zhao M., Xie F. 5-Azacytidine promotes shoot regeneration during Agrobacterium-mediated soybean transformation. Plant. Physiol. Biochem. 2019;141:40–50. doi: 10.1016/j.plaphy.2019.05.014. PubMed DOI

Dennis E., Peacock W. Epigenetic regulation of flowering. Curr. Opin. Plant. Biol. 2007;10:520–527. doi: 10.1016/j.pbi.2007.06.009. PubMed DOI

Cheng Y.-H., Peng X.-Y., Yu Y.-C., Sun Z.-Y., Han L. The Effects of DNA Methylation Inhibition on Flower Development in the Dioecious Plant Salix Viminalis. Forests. 2019;10:173. doi: 10.3390/f10020173. DOI

Li S.F., Zhang G.J., Yuan J.H., Deng C.L., Lu L.D., Gao W.J. Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach. Russ. J. Plant. Physiol. 2015;62:670–675. doi: 10.1134/S1021443715050118. DOI

Ogneva Z.V., Suprun A., Dubrovina A.S., Kiselev K.V. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant. Prot. Sci. 2019;55:73–80. doi: 10.17221/94/2018-PPS. DOI

Nishimura H., Himi E., Eun C.-H., Takahashi H., Qian Q., Tsugane K., Maekawa M. Transgenerational activation of an autonomous DNA transposon, Dart1-24, by 5-azaC treatment in rice. Theor. Appl. Genet. 2019;132:3347–3355. doi: 10.1007/s00122-019-03429-7. PubMed DOI

Konečná K., Sováková P., Anteková K., Fajkus J., Fojtová M. Distinct Responses of Arabidopsis Telomeres and Transposable Elements to Zebularine Exposure. Int. J. Mol. Sci. 2021;22:468. doi: 10.3390/ijms22010468. PubMed DOI PMC

Boonjing P., Masuta Y., Nozawa K., Kato A., Ito H. The effect of Zebularine on the heat-activated retrotransposon ONSEN in Arabidopsis thaliana and Vigna angularis. Genes Genet. Syst. 2020;95:165–172. doi: 10.1266/ggs.19-00046. PubMed DOI

Yamagishi K., Kikuta Y. Nucleoside derivatives of 5-methylcytosine suppress 5-azacytidine-induced reactivation of a silent transgene in suspension-cultured tobacco cells. Plant. Biotechnol. 2021;38:173–178. doi: 10.5511/plantbiotechnology.20.1126b. PubMed DOI PMC

Tyč D., Nocarová E., Sikorová L., Fischer L. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level. Plant. Cell Rep. 2017;36:1311–1322. doi: 10.1007/s00299-017-2155-7. PubMed DOI

Verhoeven K.J., van Gurp T. Transgenerational Effects of Stress Exposure on Offspring Phenotypes in Apomictic Dandelion. PLoS ONE. 2012;7:e38605. doi: 10.1371/journal.pone.0038605. PubMed DOI PMC

González A.P.R., Preite V., Verhoeven K.J.F., Latzel V. Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens. Front. Plant. Sci. 2018;9:1677. doi: 10.3389/fpls.2018.01677. PubMed DOI PMC

Yang X., Sanchez R., Kundariya H., Maher T., Dopp I., Schwegel R., Virdi K., Axtell M.J., MacKenzie S.A. Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nat. Commun. 2020;11:1–17. doi: 10.1038/s41467-020-16036-8. PubMed DOI PMC

Castillo A.M., Valero-Rubira I., Burrell M., Allué S., Costar M.A., Vallés M.P. Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route. Plants. 2020;9:1442. doi: 10.3390/plants9111442. PubMed DOI PMC

Wójcikowska B., Botor M., Morończyk J., Wójcik A., Nodzynski T., Karcz J., Gaj M.D. Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway. Front. Plant. Sci. 2018;9:1353. doi: 10.3389/fpls.2018.01353. PubMed DOI PMC

Bie X.M., Dong L., Li X.H., Wang H., Gao X.-Q., Li X.G. Trichostatin A and sodium butyrate promotes plant regeneration in common wheat. Plant. Signal. Behav. 2020;15:1820681. doi: 10.1080/15592324.2020.1820681. PubMed DOI PMC

Becker C., Weigel D. Epigenetic variation: Origin and transgenerational inheritance. Curr. Opin. Plant. Biol. 2012;15:562–567. doi: 10.1016/j.pbi.2012.08.004. PubMed DOI

Jacobsen S.E., Meyerowitz E.M. Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis. Science. 1997;277:1100–1103. doi: 10.1126/science.277.5329.1100. PubMed DOI

Jacobsen S.E., Sakai H., Finnegan E., Cao X., Meyerowitz E.M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr. Biol. 2000;10:179–186. doi: 10.1016/S0960-9822(00)00324-9. PubMed DOI

Soppe W.J., Jacobsen S.E., Alonso-Blanco C., Jackson J.P., Kakutani T., Koornneef M., Peeters A.J. The Late Flowering Phenotype of fwa Mutants Is Caused by Gain-of-Function Epigenetic Alleles of a Homeodomain Gene. Mol. Cell. 2000;6:791–802. doi: 10.1016/S1097-2765(05)00090-0. PubMed DOI

Stokes T.L., Kunkel B.N., Richards E.J. Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 2002;16:171–182. doi: 10.1101/gad.952102. PubMed DOI PMC

Saze H., Kakutani T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J. 2007;26:3641–3652. doi: 10.1038/sj.emboj.7601788. PubMed DOI PMC

Kakutani T., Jeddeloh J.A., Flowers S.K., Munakata K., Richards E.J. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations. Proc. Natl. Acad. Sci. USA. 1996;93:12406–12411. doi: 10.1073/pnas.93.22.12406. PubMed DOI PMC

Luna E., Ton J. The epigenetic machinery controlling transgenerational systemic acquired resistance. Plant. Signal. Behav. 2012;7:615–618. doi: 10.4161/psb.20155. PubMed DOI PMC

Furci L., Jain R., Stassen J., Berkowitz O., Whelan J., Roquis D., Baillet V., Colot V., Johannes F., Ton J. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife. 2019;8:e40655. doi: 10.7554/eLife.40655. PubMed DOI PMC

Finnegan E.J., Peacock W.J., Dennis E.S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA. 1996;93:8449–8454. doi: 10.1073/pnas.93.16.8449. PubMed DOI PMC

Sow M.D., Le Gac A., Fichot R., Lanciano S., Delaunay A., Le Jan I., Lesage-Descauses M., Citerne S., Caius J., Brunaud V., et al. RNAi suppression of DNA methylation affects drought stress response and genome integrity in transgenic poplar. N. Phytol. 2021 doi: 10.1111/nph.17555. PubMed DOI

Johannes F., Porcher E., Teixeira F.K., Saliba-Colombani V., Simon M., Agier N., Bulski A., Albuisson J., Heredia F., Audigier P., et al. Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits. PLoS Genet. 2009;5:e1000530. doi: 10.1371/journal.pgen.1000530. PubMed DOI PMC

Reinders J., Wulff B., Mirouze M., Marí-Ordóñez A., Dapp M., Rozhon W., Bucher E., Theiler G., Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23:939–950. doi: 10.1101/gad.524609. PubMed DOI PMC

Johannes F., Tatche M.C. Quantitative Epigenetics Through Epigenomic Perturbation of Isogenic Lines. Genetics. 2011;188:215–227. doi: 10.1534/genetics.111.127118. PubMed DOI PMC

Cortijo S., Wardenaar R., Colomé-Tatché M., Gilly A., Etcheverry M., Labadie K., Caillieux E., Hospital F., Aury J.-M., Wincker P., et al. Mapping the Epigenetic Basis of Complex Traits. Science. 2014;343:1145–1148. doi: 10.1126/science.1248127. PubMed DOI

Roux F., Tatche M.C., Edelist C., Wardenaar R., Guerche P., Hospital F., Colot V., Jansen R.C., Johannes F. Genome-Wide Epigenetic Perturbation Jump-Starts Patterns of Heritable Variation Found in Nature. Genetics. 2011;188:1015–1017. doi: 10.1534/genetics.111.128744. PubMed DOI PMC

Kooke R., Johannes F., Wardenaar R., Becker F., Etcheverry M., Colot V., Vreugdenhil D., Keurentjes J.J. Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in Arabidopsis thaliana. Plant. Cell. 2015;27:337–348. doi: 10.1105/tpc.114.133025. PubMed DOI PMC

Zhang Y.-Y., Latzel V., Fischer M., Bossdorf O. Understanding the evolutionary potential of epigenetic variation: A comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity. 2018;121:257–265. doi: 10.1038/s41437-018-0095-9. PubMed DOI PMC

Kooke R., Morgado L., Becker F.F.M., Van Eekelen H., Hazarika R.R., Zheng Q., De Vos R.C., Johannes F., Keurentjes J.J. Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map. Genome Res. 2018;29:96–106. doi: 10.1101/gr.232371.117. PubMed DOI PMC

Lauss K., Wardenaar R., Oka R., van Hulten M.H.A., Guryev V., Keurentjes J.J.B., Stam M., Johannes F. Parental DNA Methylation States Are Associated with Heterosis in Epigenetic Hybrids. Plant. Physiol. 2017;176:1627–1645. doi: 10.1104/pp.17.01054. PubMed DOI PMC

Dapp M., Reinders J., Bédiée A., Balsera C., Bucher E., Theiler G., Granier C., Paszkowski J. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat. Plants. 2015;1:15092. doi: 10.1038/nplants.2015.92. PubMed DOI

Hu L., Li N., Xu C., Zhong S., Lin X., Yang J., Zhou T., Yuliang A., Wu Y., Chen Y.-R., et al. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc. Natl. Acad. Sci. USA. 2014;111:10642–10647. doi: 10.1073/pnas.1410761111. PubMed DOI PMC

Li Q., Eichten S.R., Hermanson P.J., Zaunbrecher V.M., Song J., Wendt J., Rosenbaum H., Madzima T.F., Sloan A.E., Huang J., et al. Genetic Perturbation of the Maize Methylome. Plant. Cell. 2014;26:4602–4616. doi: 10.1105/tpc.114.133140. PubMed DOI PMC

Yamauchi T., Johzuka-Hisatomi Y., Terada R., Nakamura I., Iida S. The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant. Mol. Biol. 2014;85:219–232. doi: 10.1007/s11103-014-0178-9. PubMed DOI

Xu Y.-Z., Arrieta-Montiel M.P., Virdi K., de Paula W.B., Widhalm J., Basset G.J., Davila J.I., Elthon T.E., Elowsky C.G., Sato S.J., et al. MutS HOMOLOG1 Is a Nucleoid Protein That Alters Mitochondrial and Plastid Properties and Plant Response to High Light. Plant. Cell. 2011;23:3428–3441. doi: 10.1105/tpc.111.089136. PubMed DOI PMC

Abdelnoor R.V., Yule R., Elo A., Christensen A.C., Meyer-Gauen G., Mackenzie S.A. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA. 2003;100:5968–5973. doi: 10.1073/pnas.1037651100. PubMed DOI PMC

Virdi K., Laurie J.D., Xu Y.-Z., Yu J., Shao M.-R., Sanchez R., Kundariya H., Wang D., Riethoven J.-J., Wamboldt Y., et al. ArabidopsisMSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat. Commun. 2015;6:6386. doi: 10.1038/ncomms7386. PubMed DOI PMC

Amaral M.N.D., Auler P.A., Rossatto T., Barros P.M., Oliveira M.M., Braga E.J.B. Long-term somatic memory of salinity unveiled from physiological, biochemical and epigenetic responses in two contrasting rice genotypes. Physiol. Plant. 2020;170 doi: 10.1111/ppl.13149. PubMed DOI

Srikant T., Drost H.-G. How Stress Facilitates Phenotypic Innovation through Epigenetic Diversity. Front. Plant. Sci. 2021;11 doi: 10.3389/fpls.2020.606800. PubMed DOI PMC

Sampaio B.L., Edrada-Ebel R., Da Costa F. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016;6:29265. doi: 10.1038/srep29265. PubMed DOI PMC

Borges C.V., Minatel I.O., Gomez-Gomez H.A., Lima G.P.P. Medicinal Plants: Influence of Environmental Factors on the Content of Secondary Metabolites. In: Ghorbanpour M., Varma A., editors. Medicinal Plants and Environmental Challenges. Springer; Cham, Switzerland: 2017. pp. 259–277. DOI

Luo X., He Y. Experiencing winter for spring flowering: A molecular epigenetic perspective on vernalization. J. Integr. Plant. Biol. 2019;62:104–117. doi: 10.1111/jipb.12896. PubMed DOI

Banerjee A.K., Guo W., Huang Y. Genetic and epigenetic regulation of phenotypic variation in invasive plants—Linking research trends towards a unified framework. NeoBiota. 2019;49:77–103. doi: 10.3897/neobiota.49.33723. DOI

Marin P., Genitoni J., Barloy D., Maury S., Gibert P., Ghalambor C.K., Vieira C. Biological invasion: The influence of the hidden side of the (epi)genome. Funct. Ecol. 2019;34:385–400. doi: 10.1111/1365-2435.13317. DOI

Mozgova I., Mikulski P., Pecinka A., Farrona S. Epigenetic Mechanisms of Abiotic Stress Response and Memory in Plants. In: Alvarez-Venegas R., De-la-Peña C., Casas-Mollano J.A., editors. Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants. Springer International Publishing; Cham, Switzerland: 2019. pp. 1–64.

Roberts M.R., López Sánchez A. Plant Epigenetic Mechanisms in Response to Biotic Stress. In: Alvarez-Venegas R., De-la-Peña C., Casas-Mollano J.A., editors. Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants. Springer International Publishing; Cham, Switzerland: 2019. pp. 65–113.

Iwasaki M. Chromatin resetting mechanisms preventing transgenerational inheritance of epigenetic states. Front. Plant. Sci. 2015;6:380. doi: 10.3389/fpls.2015.00380. PubMed DOI PMC

Varotto S., Tani E., Abraham E., Krugman T., Kapazoglou A., Melzer R., Radanović A., Miladinović D. Epigenetics: Possible applications in climate-smart crop breeding. J. Exp. Bot. 2020;71:5223–5236. doi: 10.1093/jxb/eraa188. PubMed DOI PMC

Molinier J., Ries G., Zipfel C., Hohn B. Transgeneration memory of stress in plants. Nat. Cell Biol. 2006;442:1046–1049. doi: 10.1038/nature05022. PubMed DOI

Boyko A., Kovalchuk I. Genetic and Epigenetic Effects of Plant–Pathogen Interactions: An Evolutionary Perspective. Mol. Plant. 2011;4:1014–1023. doi: 10.1093/mp/ssr022. PubMed DOI

Paszkowski J., Grossniklaus U. Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant. Biol. 2011;14:195–203. doi: 10.1016/j.pbi.2011.01.002. PubMed DOI

Chen K., Arora R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013;94:33–45. doi: 10.1016/j.envexpbot.2012.03.005. DOI

Oberkofler V., Pratx L., Bäurle I. Epigenetic regulation of abiotic stress memory: Maintaining the good things while they last. Curr. Opin. Plant. Biol. 2021;61:102007. doi: 10.1016/j.pbi.2021.102007. PubMed DOI PMC

Bäurle I. Can’t remember to forget you: Chromatin-based priming of somatic stress responses. Semin. Cell Dev. Biol. 2018;83:133–139. doi: 10.1016/j.semcdb.2017.09.032. PubMed DOI

Lämke J., Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:1–11. doi: 10.1186/s13059-017-1263-6. PubMed DOI PMC

Boyko A., Blevins T., Yao Y., Golubov A., Bilichak A., Ilnytskyy Y., Hollunder J., Meins F.M., Jr., Kovalchuk I. Transgenerational Adaptation of Arabidopsis to Stress Requires DNA Methylation and the Function of Dicer-Like Proteins. PLoS ONE. 2010;5:e9514. doi: 10.1371/annotation/726f31b5-99c4-44e9-9cd6-b8d66b3f6038. PubMed DOI PMC

Sánchez A.L., Pascual-Pardo D., Furci L., Roberts M.R., Ton J. Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. Front. Plant. Sci. 2021;12:248. doi: 10.3389/fpls.2021.644999. PubMed DOI PMC

Forestan C., Farinati S., Zambelli F., Pavesi G., Rossi V., Varotto S. Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. Plant. Cell Environ. 2019;43:55–75. doi: 10.1111/pce.13660. PubMed DOI

Cong W., Miao Y., Xu L., Zhang Y., Yuan C., Wang J., Zhuang T., Lin X., Jiang L., Wang N., et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.) BMC Plant. Biol. 2019;19:282. doi: 10.1186/s12870-019-1887-7. PubMed DOI PMC

Amaral J., Ribeyre Z., Vigneaud J., Sow M.D., Fichot R., Messier C., Pinto G., Nolet P., Maury S. Advances and Promises of Epigenetics for Forest Trees. Forests. 2020;11:976. doi: 10.3390/f11090976. DOI

Baránek M., Čechová J., Raddová J., Holleinová V., Ondrušíková E., Pidra M. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera) Stressed by In Vitro Cultivation and Thermotherapy. PLoS ONE. 2015;10:e0126638. doi: 10.1371/journal.pone.0126638. PubMed DOI PMC

Crisp P.A., Ganguly D., Eichten S.R., Borevitz J., Pogson B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2016;2:e1501340. doi: 10.1126/sciadv.1501340. PubMed DOI PMC

Torti S., Schlesier R., Thümmler A., Bartels D., Römer P., Koch B., Werner S., Panwar V., Kanyuka K., von Wirén N., et al. Transient reprogramming of crop plants for agronomic performance. Nat. Plants. 2021;7:159–171. doi: 10.1038/s41477-021-00851-y. PubMed DOI

Papikian A., Liu W., Gallego-Bartolome J., Jacobsen S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-08736-7. PubMed DOI PMC

Guarino F., Cicatelli A., Brundu G., Heinze B., Castiglione S. Epigenetic Diversity of Clonal White Poplar (Populus alba L.) Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy? PLoS ONE. 2015;10:e0131480. doi: 10.1371/journal.pone.0131480. PubMed DOI PMC

Schönberger B., Chen X., Mager S., Ludewig U. Site-Dependent Differences in DNA Methylation and Their Impact on Plant Establishment and Phosphorus Nutrition in Populus trichocarpa. PLoS ONE. 2016;11:e0168623. doi: 10.1371/journal.pone.0168623. PubMed DOI PMC

Broeck A.V., Cox K., Brys R., Castiglione S., Cicatelli A., Guarino F., Heinze B., Steenackers M., Mijnsbrugge K.V. Variability in DNA Methylation and Generational Plasticity in the Lombardy Poplar, a Single Genotype Worldwide Distributed Since the Eighteenth Century. Front. Plant. Sci. 2018;9:1635. doi: 10.3389/fpls.2018.01635. PubMed DOI PMC

Pereira W.J., Pappas M.D.C.R., Campoe O.C., Stape J.L., Grattapaglia D., Pappas G.J.P., Jr. Patterns of DNA methylation changes in elite Eucalyptus clones across contrasting environments. For. Ecol. Manag. 2020;474:118319. doi: 10.1016/j.foreco.2020.118319. DOI

Xie H., Konate M., Sai N., Tesfamicael K.G., Cavagnaro T., Gilliham M., Breen J., Metcalfe A., Stephen J.R., De Bei R., et al. Global DNA Methylation Patterns Can Play a Role in Defining Terroir in Grapevine (Vitis vinifera cv. Shiraz) Front. Plant. Sci. 2017;8:1860. doi: 10.3389/fpls.2017.01860. PubMed DOI PMC

Baránková K., Nebish A., Tříska J., Raddová J., Baránek M. Comparison of DNA methylation landscape between Czech and Armenian vineyards show their unique character and increased diversity. Czech. J. Genet. Plant. Breed. 2021;57:67–75. doi: 10.17221/90/2020-CJGPB. DOI

Varela A., Ibañez V.N., Alonso R., Zavallo D., Asurmendi S., Talquenca S.G., Marfil C.F., Berli F.J. Vineyard environments influence Malbec grapevine phenotypic traits and DNA methylation patterns in a clone-dependent way. Plant. Cell Rep. 2020;40:111–125. doi: 10.1007/s00299-020-02617-w. PubMed DOI

Chen Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant. Sci. 2010;15:57–71. doi: 10.1016/j.tplants.2009.12.003. PubMed DOI PMC

Schnable P.S., Springer N.M. Progress Toward Understanding Heterosis in Crop Plants. Annu. Rev. Plant. Biol. 2013;64:71–88. doi: 10.1146/annurev-arplant-042110-103827. PubMed DOI

Greaves I., Groszmann M., Ying H., Taylor J., Peacock W.J., Dennis E.S. Trans Chromosomal Methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. USA. 2012;109:3570–3575. doi: 10.1073/pnas.1201043109. PubMed DOI PMC

Shen H., He H., Li J., Chen W., Wang X., Guo L., Peng Z., He G., Zhong S., Qi Y., et al. Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids. Plant. Cell. 2012;24:875–892. doi: 10.1105/tpc.111.094870. PubMed DOI PMC

Rigal M., Becker C., Pélissier T., Pogorelcnik R., Devos J., Ikeda Y., Weigel D., Mathieu O. Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl. Acad. Sci. USA. 2016;113:E2083–E2092. doi: 10.1073/pnas.1600672113. PubMed DOI PMC

Zhang Q., Wang D., Lang Z., He L., Yang L., Zeng L., Li Y., Zhao C., Huang H., Zhang H., et al. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proc. Natl. Acad. Sci. USA. 2016;113:E4248–E4256. doi: 10.1073/pnas.1607851113. PubMed DOI PMC

He G., Zhu X., Elling A.A., Chen L., Wang X., Guo L., Liang M., He H., Zhang H., Chen F., et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant. Cell. 2010;22:17–33. doi: 10.1105/tpc.109.072041. PubMed DOI PMC

Ma X., Xing F., Jia Q., Zhang Q., Hu T., Wu B., Shao L., Zhao Y., Zhang Q., Zhou D.-X. Parental variation in CHG methylation is associated with allelic-specific expression in elite hybrid rice. Plant. Physiol. 2021;186:1025–1041. doi: 10.1093/plphys/kiab088. PubMed DOI PMC

Sinha P., Singh V., Saxena R.K., Kale S.M., Li Y., Garg V., Meifang T., Khan A.W., Kim K.D., Chitikineni A., et al. Genome-wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant. Biotechnol. J. 2020;18:1697–1710. doi: 10.1111/pbi.13333. PubMed DOI PMC

Li H., Yuan J., Wu M., Han Z., Li L., Jiang H., Jia Y., Han X., Liu M., Sun D., et al. Transcriptome and DNA methylome reveal insights into yield heterosis in the curds of broccoli (Brassica oleracea L var. italic) BMC Plant. Biol. 2018;18:168. doi: 10.1186/s12870-018-1384-4. PubMed DOI PMC

Shen Y., Sun S., Hua S., Shen E., Ye C., Cai D., Timko M.P., Zhu Q., Fan L. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant. J. 2017;91:874–893. doi: 10.1111/tpj.13605. PubMed DOI

Chodavarapu R.K., Feng S., Ding B., Simon S.A., Lopez D., Jia Y., Wang G.-L., Meyers B., Jacobsen S.E., Pellegrini M. Transcriptome and methylome interactions in rice hybrids. Proc. Natl. Acad. Sci. USA. 2012;109:12040–12045. doi: 10.1073/pnas.1209297109. PubMed DOI PMC

Zhang Q., Li Y., Xu T., Srivastava A.K., Wang D., Zeng L., Yang L., He L., Zhang H., Zheng Z., et al. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discov. 2016;2:16027. doi: 10.1038/celldisc.2016.27. PubMed DOI PMC

Groszmann M., Greaves I., Albert N., Fujimoto R., Helliwell C., Dennis E., Peacock W.J. Epigenetics in plants—Vernalisation and hybrid vigour. Biochim. Biophys. Acta BBA Bioenerg. 2011;1809:427–437. doi: 10.1016/j.bbagrm.2011.03.006. PubMed DOI

Seifert F., Thiemann A., Schrag T.A., Rybka D., Melchinger A.E., Frisch M., Scholten S. Small RNA-based prediction of hybrid performance in maize. BMC Genom. 2018;19:371. doi: 10.1186/s12864-018-4708-8. PubMed DOI PMC

Crisp P.A., Hammond R., Zhou P., Vaillancourt B., Lipzen A., Daum C., Barry K., De Leon N., Buell C.R., Kaeppler S.M., et al. Variation and Inheritance of Small RNAs in Maize Inbreds and F1 Hybrids. Plant. Physiol. 2019;182:318–331. doi: 10.1104/pp.19.00817. PubMed DOI PMC

Shivaprasad P.V., Dunn R.M., Santos B., Bassett A., Baulcombe D. Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J. 2011;31:257–266. doi: 10.1038/emboj.2011.458. PubMed DOI PMC

Kenan-Eichler M., Leshkowitz D., Tal L., Noor E., Melamed-Bessudo C., Feldman M., Levy A.A. Wheat Hybridization and Polyploidization Results in Deregulation of Small RNAs. Genetics. 2011;188:263–272. doi: 10.1534/genetics.111.128348. PubMed DOI PMC

Zhang L., Peng Y., Wei X., Dai Y., Yuan D., Lu Y., Pan Y., Zhu Z. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice. J. Exp. Bot. 2014;65:5989–6002. doi: 10.1093/jxb/eru337. PubMed DOI PMC

Li Y., Varala K., Moose S.P., Hudson M.E. The Inheritance Pattern of 24 nt siRNA Clusters in Arabidopsis Hybrids Is Influenced by Proximity to Transposable Elements. PLoS ONE. 2012;7:e47043. doi: 10.1371/journal.pone.0047043. PubMed DOI PMC

He G., Chen B., Wang X., Li X., Li J., He H., Yang M., Lu L., Qi Y., Wang X., et al. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol. 2013;14:R57. doi: 10.1186/gb-2013-14-6-r57. PubMed DOI PMC

Ha M., Lu J., Tian L., Ramachandran V., Kasschau K.D., Chapman E.J., Carrington J.C., Chen X., Wang X.-J., Chen Z.J. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl. Acad. Sci. USA. 2009;106:17835–17840. doi: 10.1073/pnas.0907003106. PubMed DOI PMC

Groszmann M., Greaves I., Fujimoto R., Peacock W.J., Dennis E.S. The role of epigenetics in hybrid vigour. Trends Genet. 2013;29:684–690. doi: 10.1016/j.tig.2013.07.004. PubMed DOI

Groszmann M., Gonzalez-Bayon R., Lyons R.L., Greaves I., Kazan K., Peacock W.J., Dennis E.S. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. USA. 2015;112:E6397–E6406. doi: 10.1073/pnas.1519926112. PubMed DOI PMC

Groszmann M., Gonzalez-Bayon R., Greaves I., Wang L., Huen A.K., Peacock W.J., Dennis E.S. Intraspecific Arabidopsis Hybrids Show Different Patterns of Heterosis Despite the Close Relatedness of the Parental Genomes. Plant. Physiol. 2014;166:265–280. doi: 10.1104/pp.114.243998. PubMed DOI PMC

Hauben M., Haesendonckx B., Standaert E., Van Der Kelen K., Azmi A., Akpo H., Van Breusegem F., Guisez Y., Bots M., Lambert B., et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl. Acad. Sci. USA. 2009;106:20109–20114. doi: 10.1073/pnas.0908755106. PubMed DOI PMC

Seifert F., Thiemann A., Grant-Downton R., Edelmann S., Rybka D., Schrag T.A., Frisch M., Dickinson H.G., Melchinger A.E., Scholten S. Parental Expression Variation of Small RNAs Is Negatively Correlated with Grain Yield Heterosis in a Maize Breeding Population. Front. Plant. Sci. 2018;9:13. doi: 10.3389/fpls.2018.00013. PubMed DOI PMC

Dubin M.J., Zhang P., Meng D., Remigereau M.-S., Osborne E.J., Casale F.P., Drewe P., Kahles A., Jean G., Vilhjalmsson B., et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife. 2015;4:e05255. doi: 10.7554/eLife.05255. PubMed DOI PMC

Long Y., Xia W., Li R., Wang J., Shao M., Feng J., King G., Meng J. Epigenetic QTL Mapping in Brassica napus. Genetics. 2011;189:1093–1102. doi: 10.1534/genetics.111.131615. PubMed DOI PMC

Duan Y., Qian J., Sun Y., Yi Z., Yan M. Construction of methylation linkage map based on MSAP and SSR markers in Sorghum bicolor (L.) IUBMB Life. 2009;61:663–669. doi: 10.1002/iub.213. PubMed DOI

Alonso C., Medrano M., Pérez R., Canto A., Parra-Tabla V., Herrera C.M. Interspecific variation across angiosperms in global DNA methylation: Phylogeny, ecology and plant features in tropical and Mediterranean communities. N. Phytol. 2019;224:949–960. doi: 10.1111/nph.16046. PubMed DOI

Bocklandt S., Lin W., Sehl M.E., Sánchez F., Sinsheimer J.S., Horvath S., Vilain E. Epigenetic Predictor of Age. PLoS ONE. 2011;6:e14821. doi: 10.1371/journal.pone.0014821. PubMed DOI PMC

McCartney D.L., Hillary R.F., Stevenson A.J., Ritchie S.J., Walker R.M., Zhang Q., Morris S.W., Bermingham M.L., Campbell A., Murray A.D., et al. Epigenetic prediction of complex traits and death. Genome Biol. 2018;19:1–11. doi: 10.1186/s13059-018-1514-1. PubMed DOI PMC

Hu Y., Morota G., Rosa G.J.M., Gianola D. Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data. Genetics. 2015;201:779–793. doi: 10.1534/genetics.115.177204. PubMed DOI PMC

Regulski M., Lu Z., Kendall J., Donoghue M.T., Reinders J., Llaca V., Deschamps S., Smith A., Levy D., McCombie W.R., et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 2013;23:1651–1662. doi: 10.1101/gr.153510.112. PubMed DOI PMC

Sung S., Amasino R.M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nat. Cell Biol. 2004;427:159–164. doi: 10.1038/nature02195. PubMed DOI

Trap-Gentil M.-V., Hébrard C., Lafon-Placette C., Delaunay A., Hagège D., Joseph C., Brignolas F., Lefebvre M., Barnes S., Maury S. Time course and amplitude of DNA methylation in the shoot apical meristem are critical points for bolting induction in sugar beet and bolting tolerance between genotypes. J. Exp. Bot. 2011;62:2585–2597. doi: 10.1093/jxb/erq433. PubMed DOI

Köhler C., Makarevich G. Epigenetic mechanisms governing seed development in plants. EMBO Rep. 2006;7:1223–1227. doi: 10.1038/sj.embor.7400854. PubMed DOI PMC

Satgé C., Moreau S., Sallet E., Lefort G., Auriac M.-C., Remblière C., Cottret L., Gallardo K., Noirot C., Jardinaud M.-F., et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat. Plants. 2016;2:16166. doi: 10.1038/nplants.2016.166. PubMed DOI

Angel A., Song J., Yang H., Questa J., Dean C., Howard M. Vernalizing cold is registered digitally at FLC. Proc. Natl. Acad. Sci. USA. 2015;112:4146–4151. doi: 10.1073/pnas.1503100112. PubMed DOI PMC

Gallusci P., Dai Z., Génard M., Gauffretau A., Leblanc-Fournier N., Richard-Molard C., Vile D., Brunel-Muguet S. Epigenetics for Plant Improvement: Current Knowledge and Modeling Avenues. Trends Plant. Sci. 2017;22:610–623. doi: 10.1016/j.tplants.2017.04.009. PubMed DOI

Wang E., Robertson M., Hammer G., Carberry P., Holzworth D., Meinke H., Chapman S., Hargreaves J., Huth N., McLean G. Development of a generic crop model template in the cropping system model APSIM. Eur. J. Agron. 2002;18:121–140. doi: 10.1016/S1161-0301(02)00100-4. DOI

Asseng S., Zhu Y., Wang E., Zhang W. Chapter 20—Crop modeling for climate change impact and adaptation. In: Sadras V.O., Calderini D.F., editors. Crop Physiology. 2nd ed. Academic Press; San Diego, CA, USA: 2015. pp. 505–546.

Martre P., Wallach D., Asseng S., Ewert F., Jones J.W., Rötter R., Boote K., Ruane A.C., Thorburn P.J., Cammarano D., et al. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 2014;21:911–925. doi: 10.1111/gcb.12768. PubMed DOI

Chenu K., Porter J.R., Martre P., Basso B., Chapman S., Ewert F., Bindi M., Asseng S. Contribution of Crop Models to Adaptation in Wheat. Trends Plant. Sci. 2017;22:472–490. doi: 10.1016/j.tplants.2017.02.003. PubMed DOI

Wang X., Liu F., Jiang D. Priming: A promising strategy for crop production in response to future climate. J. Integr. Agric. 2017;16:2709–2716. doi: 10.1016/S2095-3119(17)61786-6. DOI

Tao F., Rötter R., Palosuo T., Díaz-Ambrona C.G.H., Minguez M.I., Semenov M., Kersebaum K.C., Nendel C., Specka X., Hoffmann H., et al. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Chang. Biol. 2017;24:1291–1307. doi: 10.1111/gcb.14019. PubMed DOI

Liu B., Martre P., Ewert F., Porter J.R., Challinor A.J., Müller C., Ruane A.C., Waha K., Thorburn P.J., Aggarwal P.K., et al. Global wheat production with 1.5 and 2.0 °C above pre-industrial warming. Glob. Chang. Biol. 2018;25:1428–1444. doi: 10.1111/gcb.14542. PubMed DOI

Holzworth D.P., Huth N.I., Devoil P.G., Zurcher E., Herrmann N., McLean G., Chenu K., van Oosterom E.J., Snow V., Murphy C., et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014;62:327–350. doi: 10.1016/j.envsoft.2014.07.009. DOI

Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., et al. An overview of the crop model stics. Eur. J. Agron. 2003;18:309–332. doi: 10.1016/S1161-0301(02)00110-7. DOI

Penning de Vries F.W., Van Laar H.H. Simulation of Plant. Growth and Crop. Production. Simulation Monographs, Pudoc, Wageningen. Volume 308 Centre for Agricultural Publishing and Documentation; Wageningen, The Netherlands: 1982.

Jones J.W., Tsuji G.Y., Hoogenboom G., Hunt L.A., Thornton P.K., Wilkens P.W., Imamura D.T., Bowen W.T., Singh U. Decision support system for agrotechnology transfer: DSSAT v3. In: Tsuji G.Y., Hoogenboom G., Thornton P.K., editors. Understanding Options for Agricultural Production. Springer; Dordrecht, The Netherlands: 1998. pp. 157–177. Systems Approaches for Sustainable Agricultural Development.

Boote K.J., Jones J.W., Hoogenboom G., Pickering N.B. The CROPGRO model for grain legumes. In: Tsuji G.Y., Hoogenboom G., Thornton P.K., editors. Understanding Options for Agricultural Production. Springer; Dordrecht, The Netherlands: 1998. pp. 99–128. Systems Approaches for Sustainable Agricultural Development.

King G.J., Amoah S., Kurup S. Exploring and exploiting epigenetic variation in crops. Genome. 2010;53:856–868. doi: 10.1139/G10-059. PubMed DOI

Vriet C., Hennig L., Laloi C. Stress-induced chromatin changes in plants: Of memories, metabolites and crop improvement. Cell. Mol. Life Sci. 2015;72:1261–1273. doi: 10.1007/s00018-014-1792-z. PubMed DOI PMC

Giovannoni J. Harnessing epigenome modifications for better crops. J. Exp. Bot. 2016;67:2535–2537. doi: 10.1093/jxb/erw143. PubMed DOI PMC

Sundström J.F., Albihn A., Boqvist S., Ljungvall K., Marstorp H., Martiin C., Nyberg K., Vågsholm I., Yuen J., Magnusson U. Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases—A risk analysis in three economic and climate settings. Food Secur. 2014;6:201–215. doi: 10.1007/s12571-014-0331-y. DOI

Kumar M. Impact of climate change on crop yield and role of model for achieving food security. Environ. Monit. Assess. 2016;188 doi: 10.1007/s10661-016-5472-3. PubMed DOI

Rötter R., Carter T.R., Olesen J.E., Porter J.R. Crop–climate models need an overhaul. Nat. Clim. Chang. 2011;1:175–177. doi: 10.1038/nclimate1152. DOI

Brunel-Muguet S., D’Hooghe P., Bataillã M.-P., Larrã C., Kim T.-H., Trouverie J., Avice J.-C., Etienne P., DãRr C., Bataillé M.-P., et al. Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.) Front. Plant. Sci. 2015;6:213. doi: 10.3389/fpls.2015.00213. PubMed DOI PMC

Hatzig S.V., Nuppenau J.-N., Snowdon R.J., Schießl S.V. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.) BMC Plant. Biol. 2018;18:297. doi: 10.1186/s12870-018-1531-y. PubMed DOI PMC

Gevers C., Van Rijswick H.F., Swart J. Peasant Seeds in France: Fostering A More Resilient Agriculture. Sustainability. 2019;11:3014. doi: 10.3390/su11113014. DOI

Dürr C., Aubertot J.-N., Richard G., Dubrulle P., Duval Y., Boiffin J. Simple. Soil Sci. Soc. Am. J. 2001;65:414–423. doi: 10.2136/sssaj2001.652414x. DOI

Bradford K.J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 2002;50:248–260. doi: 10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2. DOI

Eichten S.R., Schmitz R.J., Springer N.M. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. Plant. Physiol. 2014;165:933–947. doi: 10.1104/pp.113.234211. PubMed DOI PMC

Díaz-Sala C. Molecular Dissection of the Regenerative Capacity of Forest Tree Species: Special Focus on Conifers. Front. Plant. Sci. 2019;9:1943. doi: 10.3389/fpls.2018.01943. PubMed DOI PMC

Ibáñez S., Carneros E., Testillano P., Pérez-Pérez J. Advances in Plant Regeneration: Shake, Rattle and Roll. Plants. 2020;9:897. doi: 10.3390/plants9070897. PubMed DOI PMC

Ghosh A., Igamberdiev A.U., Debnath S.C. Tissue culture-induced DNA methylation in crop plants: A review. Mol. Biol. Rep. 2021;48:823–841. doi: 10.1007/s11033-020-06062-6. PubMed DOI

Fehér A. Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta BBA Bioenerg. 2015;1849:385–402. doi: 10.1016/j.bbagrm.2014.07.005. PubMed DOI

Testillano P.S. Microspore embryogenesis: Targeting the determinant factors of stress-induced cell reprogramming for crop improvement. J. Exp. Bot. 2019;70:2965–2978. doi: 10.1093/jxb/ery464. PubMed DOI

Maluszynski M., Kasha K., Forster B.P., Szarejko I. Doubled Haploid Production in Crop Plants: A Manual. Springer Science & Business Media; Cham, Switzerland: 2003.

Yakovlev I.A., Lee Y., Rotter B., Olsen J.E., Skrøppa T., Johnsen Ø., Fossdal C.G. Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis. Tree Genet. Genomes. 2014;10:355–366. doi: 10.1007/s11295-013-0691-z. DOI

Yakovlev I.A., Carneros E., Lee Y., Olsen J.E., Fossdal C.G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta. 2016;243:1237–1249. doi: 10.1007/s00425-016-2484-8. PubMed DOI

Ede-La-Peña C., Nic-Can G.I., Galaz-Ávalos R.M., Eavilez-Montalvo R., Loyola-Vargas V.M. The role of chromatin modifications in somatic embryogenesis in plants. Front. Plant. Sci. 2015;6:635. doi: 10.3389/fpls.2015.00635. PubMed DOI PMC

Corredoira E., Cano V., Bárány I., Solís M.-T., Rodríguez H., Vieitez A.-M., Risueño M.C., Testillano P.S. Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba. J. Plant. Physiol. 2017;213:42–54. doi: 10.1016/j.jplph.2017.02.012. PubMed DOI

Testillano P.S., Solís M.-T., Risueño M.C. The 5-methyl-deoxy-cytidine (5mdC) localization to reveal in situ the dynamics of DNA methylation chromatin pattern in a variety of plant organ and tissue cells during development. Physiol. Plant. 2012;149:104–113. doi: 10.1111/ppl.12015. PubMed DOI

Testillano P.S., Risueño M.C. Detection of Epigenetic Modifications During Microspore Embryogenesis: Analysis of DNA Methylation Patterns Dynamics. In: Germana M.A., Lambardi M., editors. In Vitro Embryogenesis in Higher Plants. Springer; New York, NY, USA: 2016. pp. 491–502. Methods in Molecular Biology. PubMed

El-Tantawy A.A., Solís M.-T., Risueño M.C., Testillano P.S. Changes in DNA Methylation Levels and Nuclear Distribution Patterns after Microspore Reprogramming to Embryogenesis in Barley. Cytogenet. Genome Res. 2014;143:200–208. doi: 10.1159/000365232. PubMed DOI

Berenguer E., Bárány I., Solís M.-T., Pérez-Pérez Y., Risueño M.C., Testillano P.S. Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation. Front. Plant. Sci. 2017;8:1161. doi: 10.3389/fpls.2017.01161. PubMed DOI PMC

Rodríguez-Sanz H., Moreno-Romero J., Solís M.-T., Köhler C., Risueño M.C., Testillano P.S. Changes in Histone Methylation and Acetylation during Microspore Reprogramming to Embryogenesis Occur Concomitantly with BnHKMT and BnHAT Expression and Are Associated with Cell Totipotency, Proliferation, and Differentiation in Brassica napus. Cytogenet. Genome Res. 2014;143:209–218. doi: 10.1159/000365261. PubMed DOI

Li H., Soriano M., Cordewener J., Muino J.M., Riksen T., Fukuoka H., Angenent G.C., Boutilier K. The Histone Deacetylase Inhibitor Trichostatin A Promotes Totipotency in the Male Gametophyte. Plant. Cell. 2014;26:195–209. doi: 10.1105/tpc.113.116491. PubMed DOI PMC

Onder T., Kara N., Cherry A., Sinha A.U., Zhu N., Bernt K., Cahan P., Mancarci B.O., Unternaehrer J., Gupta P.B., et al. Chromatin-modifying enzymes as modulators of reprogramming. Nat. Cell Biol. 2012;483:598–602. doi: 10.1038/nature10953. PubMed DOI PMC

Horstman A., Bemer M., Boutilier K. A transcriptional view on somatic embryogenesis. Regeneration. 2017;4:201–216. doi: 10.1002/reg2.91. PubMed DOI PMC

Wójcik A.M., Wójcikowska B., Gaj M.D. Current Perspectives on the Auxin-Mediated Genetic Network that Controls the Induction of Somatic Embryogenesis in Plants. Int. J. Mol. Sci. 2020;21:1333. doi: 10.3390/ijms21041333. PubMed DOI PMC

Su Y.H., Tang L.P., Zhao X.Y., Zhang X.S. Plant cell totipotency: Insights into cellular reprogramming. J. Integr. Plant. Biol. 2020;63:228–243. doi: 10.1111/jipb.12972. PubMed DOI

Hauser A.-T., Robaa D., Jung M. Epigenetic small molecule modulators of histone and DNA methylation. Curr. Opin. Chem. Biol. 2018;45:73–85. doi: 10.1016/j.cbpa.2018.03.003. PubMed DOI

Kim Y., Jeong J., Choi D. Small-molecule-mediated reprogramming: A silver lining for regenerative medicine. Exp. Mol. Med. 2020;52:213–226. doi: 10.1038/s12276-020-0383-3. PubMed DOI PMC

Osorio-Montalvo P., Sáenz-Carbonell L., De-La-Peña C. 5-Azacytidine: A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. Int. J. Mol. Sci. 2018;19:3182. doi: 10.3390/ijms19103182. PubMed DOI PMC

Carneros E., Pérez-Pérez Y., Ivett Bárány I., Pintos B., Gómez-Garay A., Gómez-Garay M., Testillano P. Dynamics of DNA Methylation and Effects of De-Methylating Agents on Somatic Embryogenesis of Quercus Suber L.; Proceedings of the Clonal Trees in the Bioeconomy Age: Opportunities and Challenges; Coimbra, Portugal. 5 April 2019.

Maxwell M. Sanatech Seed Launches World’s First GE Tomato. [(accessed on 28 July 2021)]; Available online: http://www.fruitnet.com/eurofruit/article/184662/sanatech-seed-launches-worlds-first-ge-tomato.

Gallego-Bartolome J., Liu W., Kuo P.H., Feng S., Ghoshal B., Gardiner J., Zhao J.M.-C., Park S.Y., Chory J., Jacobsen S.E. Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis. Cell. 2019;176:1068–1082.e19. doi: 10.1016/j.cell.2019.01.029. PubMed DOI PMC

Gallego-Bartolomé J. DNA methylation in plants: Mechanisms and tools for targeted manipulation. N. Phytol. 2020;227:38–44. doi: 10.1111/nph.16529. PubMed DOI

Johnson L.M., Du J., Hale C.J., Bischof S., Feng S., Chodavarapu R.K., Zhong X., Marson G., Pellegrini M., Segal D., et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nat. Cell Biol. 2014;507:124–128. doi: 10.1038/nature12931. PubMed DOI PMC

Gallego-Bartolome J., Gardiner J., Liu W., Papikian A., Ghoshal B., Kuo H.Y., Zhao J.M.-C., Segal D.J., Jacobsen S.E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA. 2018;115:E2125–E2134. doi: 10.1073/pnas.1716945115. PubMed DOI PMC

Li J., Yang D.-L., Huang H., Zhang G., He L., Pang J., Lozano-Durán R., Lang Z., Zhu J.-K. Epigenetic memory marks determine epiallele stability at loci targeted by de novo DNA methylation. Nat. Plants. 2020;6:661–674. doi: 10.1038/s41477-020-0671-x. PubMed DOI

Zhong X., Du J., Hale C.J., Gallego-Bartolome J., Feng S., Vashisht A.A., Chory J., Wohlschlegel J.A., Patel D.J., Jacobsen S.E. Molecular Mechanism of Action of Plant DRM De Novo DNA Methyltransferases. Cell. 2014;157:1050–1060. doi: 10.1016/j.cell.2014.03.056. PubMed DOI PMC

Steward N., Ito M., Yamaguchi Y., Koizumi N., Sano H. Periodic DNA Methylation in Maize Nucleosomes and Demethylation by Environmental Stress. J. Biol. Chem. 2002;277:37741–37746. doi: 10.1074/jbc.M204050200. PubMed DOI

Song Q., Zhang T., Stelly D., Chen Z.J. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol. 2017;18:1–14. doi: 10.1186/s13059-017-1229-8. PubMed DOI PMC

Guo H., Wu T., Li S., He Q., Yang Z., Zhang W., Gan Y., Sun P., Xiang G., Zhang H., et al. The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice. Int. J. Mol. Sci. 2019;20:5089. doi: 10.3390/ijms20205089. PubMed DOI PMC

Rajkumar M.S., Shankar R., Garg R., Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics. 2020;112:3537–3548. doi: 10.1016/j.ygeno.2020.04.005. PubMed DOI

Qian Y., Hu W., Liao J., Zhang J., Ren Q. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem. Biophys. Res. Commun. 2019;512:742–749. doi: 10.1016/j.bbrc.2019.03.150. PubMed DOI

Pandey G., Yadav C.B., Sahu P.P., Muthamilarasan M., Prasad M. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.) Plant. Cell Rep. 2016;36:759–772. doi: 10.1007/s00299-016-2093-9. PubMed DOI

Komivi D., Marie A.M., Rong Z., Qi Z., Mei Y., Ndiaga C., Diaga D., Linhai W., Xiurong Z. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. Plant. Sci. 2018;277:207–217. doi: 10.1016/j.plantsci.2018.09.012. PubMed DOI

Kou H., Li Y., Song X., Ou X., Xing S., Ma J., Von Wettstein D., Liu B. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.) J. Plant. Physiol. 2011;168:1685–1693. doi: 10.1016/j.jplph.2011.03.017. PubMed DOI

Wang J., Niu B., Huang J., Wang H., Yang X., Dong A., Makaroff C., Ma H., Wang Y. The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene CAP-D3. Plant. Cell. 2016;28:1894–1909. doi: 10.1105/tpc.16.00040. PubMed DOI PMC

Catoni M., Griffiths J., Becker C., Zabet N.R., Bayon C., Dapp M., Lieberman-Lazarovich M., Weigel D., Paszkowski J. DNA sequence properties that predict susceptibility to epiallelic switching. EMBO J. 2017;36:617–628. doi: 10.15252/embj.201695602. PubMed DOI PMC

Nuñez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–2519.e17. doi: 10.1016/j.cell.2021.03.025. PubMed DOI PMC

Stroud H., Ding B., Simon S.A., Feng S., Bellizzi M., Pellegrini M., Wang G.-L., Meyers B., Jacobsen S.E. Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife. 2013;2:e00354. doi: 10.7554/eLife.00354. PubMed DOI PMC

Dubrovina A.S., Kiselev K.V. Exogenous RNAs for Gene Regulation and Plant Resistance. Int. J. Mol. Sci. 2019;20:2282. doi: 10.3390/ijms20092282. PubMed DOI PMC

Que Q., Chilton M.-D.M., Elumalai S., Zhong H., Dong S., Shi L. Repurposing Macromolecule Delivery Tools for Plant Genetic Modification in the Era of Precision Genome Engineering. In: Kumar S., Barone P., Smith M., editors. Transgenic Plants: Methods and Protocols. Volume 1864. Springer; New York, NY, USA: 2018. pp. 3–18. Methods in Molecular Biology. PubMed DOI

Perrone A., Martinelli F. Plant stress biology in epigenomic era. Plant. Sci. 2019;294:110376. doi: 10.1016/j.plantsci.2019.110376. PubMed DOI

Kawakatsu T., Ecker J.R. Diversity and dynamics of DNA methylation: Epigenomic resources and tools for crop breeding. Breed. Sci. 2019;69:191–204. doi: 10.1270/jsbbs.19005. PubMed DOI PMC

Tirnaz S., Batley J. Epigenetics: Potentials and Challenges in Crop Breeding. Mol. Plant. 2019;12:1309–1311. doi: 10.1016/j.molp.2019.09.006. PubMed DOI

Thieme M., Lanciano S., Balzergue S., Daccord N., Mirouze M., Bucher E. Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding. Genome Biol. 2017;18:1–10. doi: 10.1186/s13059-017-1265-4. PubMed DOI PMC

Cai Q., He B., Kogel K.-H., Jin H. Cross-kingdom RNA trafficking and environmental RNAi—Nature’s blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 2018;46:58–64. doi: 10.1016/j.mib.2018.02.003. PubMed DOI PMC

Muhammad T., Zhang F., Zhang Y., Liang Y. RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells. 2019;8:38. doi: 10.3390/cells8010038. PubMed DOI PMC

Champigny M.J., Unda F., Skyba O., Soolanayakanahally R.Y., Mansfield S.D., Campbell M.M. Learning from methylomes: Epigenomic correlates of Populus balsamifera traits based on deep learning models of natural DNA methylation. Plant. Biotechnol. J. 2019;18:1361–1375. doi: 10.1111/pbi.13299. PubMed DOI PMC

Hauser M.-T., Aufsatz W., Jonak C., Luschnig C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta BBA Bioenerg. 2011;1809:459–468. doi: 10.1016/j.bbagrm.2011.03.007. PubMed DOI PMC

Michalak M., Plitta-Michalak B.P., Naskręt-Barciszewska M., Barciszewski J., Bujarska-Borkowska B., Chmielarz P. Global 5-methylcytosine alterations in DNA during ageing of Quercus robur seeds. Ann. Bot. 2015;116:369–376. doi: 10.1093/aob/mcv104. PubMed DOI PMC

Plitta-Michalak B.P., Naskręt-Barciszewska M.Z., Kotlarski S., Tomaszewski D., Tylkowski T., Barciszewski J., Chmielarz P., Michalak M. Changes in genomic 5-methylcytosine level mirror the response of orthodox (Acer Platanoides L.) and recalcitrant (Acer Pseudoplatanus L.) seeds to severe desiccation. Tree Physiol. 2017;38:617–629. doi: 10.1093/treephys/tpx134. PubMed DOI

Luo C., Fernie A.R., Yan J. Single-Cell Genomics and Epigenomics: Technologies and Applications in Plants. Trends Plant. Sci. 2020;25:1030–1040. doi: 10.1016/j.tplants.2020.04.016. PubMed DOI

Chen Y., Müller F., Rieu I., Winter P. Epigenetic events in plant male germ cell heat stress responses. Plant. Reprod. 2015;29:21–29. doi: 10.1007/s00497-015-0271-5. PubMed DOI

Correia B., Valledor L., Meijon M., Rodríguez J.L., Dias M.C., Santos C., Cañal M.J., Rodriguez R., Pinto G. Is the Interplay between Epigenetic Markers Related to the Acclimation of Cork Oak Plants to High Temperatures? PLoS ONE. 2013;8:e53543. doi: 10.1371/journal.pone.0053543. PubMed DOI PMC

Ali M., Sugimoto K., Ramadan A., Arimura G.-I. Memory of plant communications for priming anti-herbivore responses. Sci. Rep. 2013;3:srep01872. doi: 10.1038/srep01872. PubMed DOI PMC

Song Y., Ji D., Li S., Wang P., Li Q., Xiang F. The Dynamic Changes of DNA Methylation and Histone Modifications of Salt Responsive Transcription Factor Genes in Soybean. PLoS ONE. 2012;7:e41274. doi: 10.1371/journal.pone.0041274. PubMed DOI PMC

Choi C.-S., Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol. Genet. Genom. 2007;277:589–600. doi: 10.1007/s00438-007-0209-1. PubMed DOI

González R.M., Ricardi M.M., Iusem N.D. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics. 2013;8:864–872. doi: 10.4161/epi.25524. PubMed DOI PMC

Zhang B., Tieman D.M., Jiao C., Xu Y., Chen K., Fei Z., Giovannoni J.J., Klee H.J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. USA. 2016;113:12580–12585. doi: 10.1073/pnas.1613910113. PubMed DOI PMC

Zhong S., Fei Z., Chen Y.-R., Zheng Y., Huang M., Vrebalov J., McQuinn R., Gapper N.E., Liu B., Xiang J., et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 2013;31:154–159. doi: 10.1038/nbt.2462. PubMed DOI

Zuo J., Grierson D., Courtney L.T., Wang Y., Gao L., Zhao X., Zhu B., Luo Y., Wang Q., Giovannoni J.J. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. Plant. J. 2020;103:980–994. doi: 10.1111/tpj.14778. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...