Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30271420
PubMed Central
PMC6146766
DOI
10.3389/fpls.2018.01353
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, auxin, epigenetics, histone acetylation, in vitro culture, somatic embryogenesis, transcription factors, trichostatin A,
- Publikační typ
- časopisecké články MeSH
Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.
Department of Genetics University of Silesia in Katowice Katowice Poland
Department of Molecular Biology and Genetics Medical University of Silesia Katowice Poland
Scanning Electron Microscopy Laboratory University of Silesia in Katowice Katowice Poland
Zobrazit více v PubMed
Abrahamsson M., Valladares S., Merino I., Larsson E., von Arnold S. (2017). Degeneration pattern in somatic embryos of PubMed DOI PMC
Alinsug M. V., Yu C. W., Wu K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. PubMed DOI PMC
Bai B., Su Y. H., Yuan J., Zhang X. S. (2013). Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. PubMed DOI
Barthole G., To A., Marchive C., Brunaud V., Soubigou-Taconnat L., Berger N., et al. (2014). MYB118 represses endosperm maturation in seeds of Arabidopsis. PubMed DOI PMC
Beigh S. A., Ahad W. A., Bhat R. A., Nabi N., Ahmed T., Reshi M., et al. (2017). Role of trichostatin A as reprogramming enhancer on in vitro development of cloned embryos: a review. DOI
Belide S., Zhou X. R., Kennedy Y., Lester G., Shrestha P., Petrie J. R., et al. (2013). Rapid expression and validation of seed-specific constructs in transgenic LEC2 induced somatic embryos of DOI
Birnbaum K. D., Roudier F. (2017). Epigenetic memory and cell fate reprogramming in plants. PubMed DOI PMC
Boulard C., Fatihi A., Lepiniec L., Dubreucq B. (2017). Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. PubMed DOI
Boutilier K., Offringa R., Sharma V. K., Kieft H., Ouellet T., Zhang L., et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. PubMed DOI PMC
Boycheva I., Vassileva V., Iantcheva A. (2014). Histone acetyltransferases in plant development and plasticity. PubMed DOI PMC
Bric J. M., Bostock R. M., Silverstonet S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. PubMed PMC
Brosch G., Lusser A., Goralik-Schramel M., Loidl P. (1996). Purification and characterization of a high molecular weight histone deacetylase complex (HD2) of maize embryos. PubMed DOI
Brundrett M. C., Kendrick B., Peterson C. A. (1991). Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. PubMed DOI
Buszewicz D., Archacki R., Palusiński A., Kotliński M., Fogtman A., Iwanicka-Nowicka R., et al. (2016). HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. PubMed DOI
Chang S., Pikaard C. S. (2005). Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation. PubMed DOI
Chanvivattana Y., Bishopp A., Schubert D., Stock C., Moon Y., Sung Z. R., et al. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. PubMed DOI
Charrière F., Sotta B., Miginiac E., Hahne G. (1999). Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. DOI
Chen J. T., Chang W. C. (2004). TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. DOI
Cheng W. H., Wang F. L., Cheng X. Q., Zhu Q. H., Sun Y. Q., Zhu H. G., et al. (2015). Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton ( PubMed DOI PMC
Cheng W. H., Zhu H. G., Tian W. G., Zhu S. H., Xiong X. P., Sun Y. Q., et al. (2016). De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. PubMed DOI PMC
Cheng Y., Dai X., Zhao Y. (2007). Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. PubMed DOI PMC
Chinnusamy V., Zhu J. K. (2009). Epigenetic regulation of stress responses in plants. PubMed DOI PMC
Chitwood D. H., Nogueira F. T., Howell M. D., Montgomery T. A., Carrington J. C., Timmermans M. C. (2009). Pattern formation via small RNA mobility. PubMed DOI PMC
Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. PubMed DOI
Cueva-Agila A. Y., Medina J., Concia L., Cella R. (2016). “Effects of plant growth regulator, auxin polar transport inhibitors on somatic embryogenesis and CmSERK gene expression in Cattleya maxima (Lindl.),” in DOI
Damaskos C., Valsami S., Kontos M., Spartalis E., Kalampokas T., Kalampokas E., et al. (2017). Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. PubMed DOI
Deng W., Luo K., Li Z., Yang Y. (2009). A novel method for induction of plant regeneration via somatic embryogenesis. DOI
Duffy S. K., Friesen H., Baryshnikova A., Lambert J. P., Chong Y. T., Figeys D., et al. (2012). Exploring the yeast acetylome using functional genomics. PubMed DOI PMC
Eberharter A., Becker P. B. (2002). Histone acetylation: a switch between repressive and permissive chromatin. PubMed DOI PMC
Elhiti M., Hebelstrup K. H., Wang A., Li C., Cui Y., Hill R. D., et al. (2013). Function of type–2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. PubMed DOI
Elhiti M., Stasolla C. (2015). “ROS Signalling in plant embryogenesis,” iIn
Fehér A. (2015). Somatic embryogenesis - Stress-induced remodeling of plant cell fate. PubMed DOI
Feng S., Jacobsen S. E., Reik W. (2010). Epigenetic reprogramming in plant and animal development. PubMed DOI PMC
Feng W., Michaels S. D. (2015). Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. PubMed DOI
Finnin M. S., Donigian J. R., Cohen A., Richon V. M., Rifkind R. A., Marks P. A., et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. PubMed DOI
Gaj M. D. (2001). Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of DOI
Gaj M. D. (2011). Somatic embryogenesis and plant regeneration in the culture of PubMed
Gaj M. D., Zhang S., Harada J. J., Lemaux P. G. (2005). LEAFY COTYLEDON genes are essential for induction of somatic embryogenesis of PubMed DOI
Gamborg O. L., Miller R. A., Ojima K. (1968). Nutrient requirement of suspension culture of soybean root cells. PubMed DOI
Garcia D., Collier S. A., Byrne M. E., Martienssen R. A. (2006). Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. PubMed DOI
Gendrel A. V., Lippman Z., Martienssen R., Colot V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. PubMed DOI
Gliwicka M., Nowak K., Balazadeh S., Mueller-Roeber B., Gaj M. D. (2013). Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in PubMed DOI PMC
Gliwicka M., Nowak K., Cieśla E., Gaj M. D. (2012). Expression of seed storage product genes (CRA1 and OLEO4) in embryogenic cultures of somatic tissues of Arabidopsis. DOI
Godee C., Mira M. M., Wally O., Hill R. D., Stasolla C. (2017). Cellular localization of the Arabidopsis class 2 phytoglobin influences somatic embryogenesis. PubMed DOI PMC
Görisch S. M., Wachsmuth M., Toth K. F., Lichter P., Rippe K. (2005). Histone acetylation increases chromatin accessibility. PubMed DOI
Grigg S. P., Galinha C., Kornet N., Canales C., Scheres B., Tsiantis M. (2009). Repression of apical homeobox genes is required for embryonic root development in Arabidopsis. PubMed DOI
Grzyb M., Kalandyk A., Waligórski P., Mikuła A. (2017). The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern DOI
Grzybkowska D., Morończyk J., Wójcikowska B., Gaj M. D. (2018). Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. DOI
Guan C., Wu B., Yu T., Wang Q., Krogan N. T., Liu X., et al. (2017). Spatial auxin signaling controls leaf flattening in Arabidopsis. PubMed DOI PMC
Halim N. A. A., Tan B. C., Midin M. R., Madon M., Khalid N., Yaacob J. S. (2017). Abscisic acid and salinity stress induced somaclonal variation and increased histone deacetylase (HDAC) activity in Ananas comosus var.
Harding E. W., Tang W., Nichols K. W., Fernandez D. E., Perry S. E. (2003). Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-LIKE15. PubMed DOI PMC
Hartl M., Füßl M., Boersema P. J., Jost J., Kramer K., Bakirbas A., et al. (2017). Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. PubMed DOI PMC
Hattori N., Nishino K., Ko Y. G., Hattori N., Ohgane J., Tanaka S., et al. (2004). Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. PubMed DOI
He X. J., Chen T., Zhu J. K. (2011). Regulation and function of DNA methylation in plants and animals. PubMed DOI PMC
Heidmann I., de Lange B., Lambalk J., Angenent G. C., Boutilier K. (2011). Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. PubMed DOI PMC
Horstman A., Bemer M., Boutilier K. (2017a). A transcriptional view on somatic embryogenesis. PubMed DOI PMC
Horstman A., Li M., Heidmann I., Weemen M., Chen B., Muino J. M., et al. (2017b). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. PubMed DOI PMC
Ikeuchi M., Iwase A., Rymen B., Harashima H., Shibata M., Ohnuma M., et al. (2015). PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. PubMed DOI
Inoue K., Oikawa M., Kamimura S., Ogonuki N., Nakamura T., Nakano T., et al. (2015). Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer. PubMed DOI PMC
Jefferson R. A., Kavanagh T. A., Bevan M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. PubMed PMC
Jia H., Suzuki M., McCarty D. R. (2014). Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. PubMed DOI PMC
Jiang F., Ryabova D., Diedhiou J., Hucl P., Randhawa H., Marillia E. F., et al. (2017). Trichostatin A increases embryo and green plant regeneration in wheat. PubMed DOI
Jung M., Hoffmann K., Brosch G., Loidl P. (1997). Analogues of trichosòatin a and trapoxin B as histone deacetylase inhibitors. DOI
Junker A., Mönke G., Rutten T., Keilwagen J., Seifert M., Thi T. M. N., et al. (2012). Elongation-related functions of LEAFY COTYLEDON1 during the development of PubMed DOI
Kairong C., Gengsheng X., Xinmin L., Gengmei X., Yafu W. (1999). Effect of hydrogen peroxide on somatic embryogenesis of DOI
Kasahara H. (2016). Current aspects of auxin biosynthesis in plants. PubMed DOI
Kidner C. A., Martienssen R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. PubMed DOI
Kishigami S., Van Thuan N., Hikichi T., Ohta H., Wakayama S., Mizutani E., et al. (2006). Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. PubMed DOI
Kraut M., Wójcikowska B., Ledwoń A., Gaj M. D. (2011). Immature zygotic embryo cultures of Arabidopsis - a model system for molecular studies on morphogenic pathways induced in vitro. DOI
Kurczyńska E. U., Gaj M. D., Ujczak A., Mazur E. (2007). Histological analysis of direct somatic embryogenesis in PubMed DOI
Lauria M., Rossi V. (2011). Epigenetic control of gene regulation in plants. PubMed DOI
Lee K., Park O. S., Jung S. J., Seo P. J. (2016). Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis. PubMed DOI
Leljak-Levanić D., Bauer N., Mihaljević S., Jelaska S. (2004). Changes in DNA methylation during somatic embryogenesis in PubMed DOI
Li H., Soriano M., Cordewener J., Muiño J. M., Riksen T., Fukuoka H., et al. (2014). The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. PubMed DOI PMC
Li W., Liu H., Cheng Z. J., Su Y. H., Han H. N., Zhang Y., et al. (2011). DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PubMed DOI PMC
Liu X., Yang S., Zhao M., Luo M., Yu C. W., Chen C. Y., et al. (2014). Transcriptional repression by histone deacetylases in plants. PubMed DOI
LoSchiavo F., Pitto L., Giuliano G., Torti G., Nuti-Ronchi V., Marazziti D., et al. (1989). DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. PubMed DOI
Lotan T., Ohto M. A., Yee K. M., West M. A., Lo R., Kwong R. W., et al. (1998). Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. PubMed DOI
Lowe K., Wu E., Wang N., Hoerster G., Hastings C., Cho M. J., et al. (2016). Morphogenic regulators BABY BOOM and WUSCHEL improve monocot transformation. PubMed DOI PMC
Luo M., Cheng K., Xu Y., Yang S., Wu K. (2017). Plant responses to abiotic stress regulated by histone deacetylases. PubMed DOI PMC
Ma X., Zhang C., Zhang B., Yang C., Li S. (2016). Identification of genes regulated by histone acetylation during root development in Populus trichocarpa. PubMed DOI PMC
Machida C., Nakagawa A., Kojima S., Takahashi H., Machida Y. (2015). The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. PubMed DOI PMC
Magnani E., Jiménez-Gómez J. M., Soubigou-Taconnat L., Lepiniec L., Fiume E. (2017). Profiling the onset of somatic embryogenesis in Arabidopsis. PubMed DOI PMC
Mengel A., Ageeva A., Georgii E., Bernhardt J., Wu K., Durner J., et al. (2017). Nitric oxide modulates histone acetylation at stress genes by inhibition of histone deacetylases. PubMed DOI PMC
Michalczuk L., Ribnicky D. M., Cooke T. J., Cohen J. D. (1992). Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. PubMed DOI PMC
Mittler R. (2017). ROS are good. PubMed DOI
Miyamoto K., Tajima Y., Yoshida K., Oikawa M., Azuma R., Allen G. E., et al. (2017). Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. PubMed DOI PMC
Mozgová I., Muñoz-Viana R., Hennig L. (2017). PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of PubMed DOI PMC
Murashige T., Skoog F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. DOI
Nguyen H. N., Kim J. H., Jeong C. Y., Hong S. W., Lee H. (2013). Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation. PubMed DOI
Nic-Can G. I., López-Torres A., Barredo-Pool F., Wrobel K., Loyola-Vargas V. M., Rojas-Herrera R., et al. (2013). New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in PubMed DOI PMC
Nowak K., Gaj M. D. (2016). “Transcription factors in the regulation of somatic embryogenesis,” in Loyola-Vargas V., Ochoa-Alejo N. eds Somatic Embryogenesis, Aspects Fundamental, and Applications (Cham: Springer; ), 53–79. 10.1007/978-3-319-33705-0_5 DOI
Nowak K., Wojcikowska B., Szyrajew K., Gaj M. D. (2012). Evaluation of different embryogenic systems for production of true somatic embryos in Arabidopsis. DOI
Ou J. N., Torrisani J., Unterberger A., Provençal N., Shikimi K., Karimi M., et al. (2007). Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. PubMed DOI
Pandey R., Muller A., Napoli C. A., Selinger D. A., Pikaard C. S., Richards E. J., et al. (2002). Analysis of histone acetyltransferase and histone deacetylase families of PubMed DOI PMC
Pasternak T., Prinsen E., Ayaydin F., Miskolczi P., Potters G., Asard H., et al. (2002). The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. PubMed DOI PMC
Peserico A., Simone C. (2011). Physical and functional HAT/HDAC interplay regulates protein acetylation balance. PubMed DOI PMC
Pfluger J., Wagner D. (2007). Histone modifications and dynamic regulation of genome accessibility in plants. PubMed DOI PMC
Raghavan V. (2004). Role of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. PubMed DOI
Robert H. S., Crhak Khaitova L., Mroue S., Benková E. (2015). The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. PubMed DOI
Rodríguez-Sanz H., Moreno-Romero J., Solís M. T., Köhler C., Risueño M. C., Testillano P. S. (2014). Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with BnHKMT and BnHAT expression and are associated with cell totipotency, proliferation, and differentiation in PubMed DOI
Rossetti S., Bonatti P. M. (2001). In situ histochemical monitoring of ozone-and TMV-induced reactive oxygen species in tobacco leaves. DOI
Santos D., Fevereiro P. (2002). Loss of DNA methylation affects somatic embryogenesis in DOI
Solís-Ramos L. Y., González-Estrada T., Nahuath-Dzib S., Zapata-Rodriguez L. C., Castaño E. (2009). Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. DOI
Spange S., Wagner T., Heinzel T., Krämer O. H. (2009). Acetylation of non-histone proteins modulates cellular signalling at multiple levels. PubMed DOI
Speth C., Laubinger S. (2014). “Rapid and parallel quantification of small and large RNA species,” in PubMed
Steunou A. L., Rossetto D., Côté J. (2013). “Regulating chromatin by histone acetylation,” in
Stone S. L., Braybrook S. A., Paula S. L., Kwong L. W., Meuser J., Pelletier J., et al. (2008). Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. PubMed DOI PMC
Stone S. L., Kwong L. W., Yee K. M., Pelletier J., Lepiniec L., Fischer R. L., et al. (2001). LEAFY COTYLEDON2 encodes B3 domain transcription factor that induces embryo development. PubMed DOI PMC
Stricker S. H., Köferle A., Beck S. (2017). From profiles to function in epigenomics. PubMed DOI
Su Y. H., Zhao X. Y., Liu Y. B., Zhang C. L., O’Neill S. D., Zhang X. S. (2009). Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. PubMed DOI PMC
Tai H. H., Tai G. C., Beardmore T. (2005). Dynamic histone acetylation of late embryonic genes during seed germination. PubMed DOI
Tanaka M., Kikuchi A., Kamada H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. PubMed DOI PMC
Thellin O., Zorzi W., Lakaye B., de Borman B., Coumans B., Hennen G., et al. (1999). Housekeeping genes as internal standards: use and limits. PubMed DOI
Tognetti V. B., Bielach A., Hrtyan M. (2017). Redox regulation at the site of primary growth: Auxin, cytokinin and ROS crosstalk. PubMed DOI
Tsuji N., Kobayashi M., Nagashima K., Wakisaka Y., Koizumi K. (1976). A new antifungal antibiotic, trichostatin. PubMed DOI
Tsuwamoto R., Yokoi S., Takahata Y. (2010). Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. PubMed DOI
Turner B. M. (2000). Histone acetylation and an epigenetic code. PubMed DOI
Uddenberg D., Valladares S., Abrahamsson M., Sundström J., Sundås-Larsson A., von Arnold S. (2011). Embryogenic potential and expression of embryogenesis- related genes in conifers are affected by treatment with a histone deacetylase inhibitor. PubMed DOI PMC
Us-Camas R., Rivera-Solís G., Duarte-Aké F., De-la-Pena C. (2014). In vitro culture: an epigenetic challenge for plants. DOI
Valledor L., Meijón M., Hasbún R., Cañal M. J., Rodríguez R. (2010). Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. PubMed DOI
Venturelli S., Belz R. G., Kämper A., Berger A., von Horn K., Wegner A., et al. (2015). Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. PubMed DOI PMC
Wang W., Xu B., Wang H., Li J., Huang H., Xu L. (2011). YUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development. PubMed DOI PMC
Wang X., Niu Q. W., Teng C., Li C., Mu J., Chua N. H., et al. (2009). Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. PubMed DOI
Wang Z., Cao H., Chen F., Liu Y. (2014). The roles of histone acetylation in seed performance and plant development. PubMed DOI
Weijers D., Wagner D. (2016). Transcriptional responses to the auxin hormone. PubMed DOI
Weiste C., Dröge-Laser W. (2014). The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. PubMed DOI
Wickramasuriya A. M., Dunwell J. M. (2015). Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. PubMed DOI PMC
Williams L., Zhao J., Morozova N., Li Y., Avivi Y., Grafi G. (2003). Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. PubMed DOI
Wójcik A. M., Nodine M. D., Gaj M. D. (2017). miR160 and miR166/165 Contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis Induction in Arabidopsis. PubMed DOI PMC
Wójcikowska B., Gaj M.D. (2016). “Somatic embryogenesis in Arabidopsis,” in DOI
Wójcikowska B., Gaj M. D. (2017). Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. PubMed DOI PMC
Wójcikowska B., Jaskóła K., Gąsiorek P., Meus M., Nowak K., Gaj M. D. (2013). LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. PubMed DOI PMC
Xu W. S., Parmigiani R. B., Marks P. A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. PubMed DOI
Yaacob J. S., Loh H. S., Mat Taha R. (2013). Protein profiling and histone deacetylation activities in somaclonal variants of oil palm ( PubMed DOI PMC
Yamagishi K., Tatematsu K., Yano R., Preston J., Kitamura S., Takahashi H., et al. (2008). CHOTTO1, a double AP2 domain protein of PubMed DOI
Yang F., Zhang L., Li J., Huang J., Wen R., Ma L., et al. (2010). Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. PubMed DOI PMC
Yano R., Kanno Y., Jikumaru Y., Nakabayashi K., Kamiya Y., Nambara E. (2009). CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. PubMed DOI PMC
Yoshida M., Horinouchi S., Beppu T. (1995). Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. PubMed DOI
Zhang Y., Cao G., Qu L. J., Gu H. (2009). Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis. PubMed DOI
Zhang Y., Li B., Huai D., Zhou Y., Kliebenstein D. J. (2015). The conserved transcription factors, MYB115 and MYB118, control expression of the newly evolved benzoyloxy glucosinolate pathway in PubMed DOI PMC
Zheng Q., Zheng Y., Ji H., Burnie W., Perry S. E. (2016). Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. PubMed DOI PMC
Zilberman D., Gehring M., Tran R. K., Ballinger T., Henikoff S. (2007). Genome-wide analysis of PubMed DOI
Zuo J., Niu Q. W., Frugis G., Chua N. H. (2002). The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. PubMed DOI
MONOPTEROS isoform MP11ir plays a role during somatic embryogenesis in Arabidopsis thaliana