PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis thaliana

. 2017 Jan ; 13 (1) : e1006562. [epub] 20170117

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28095419
Odkazy

PubMed 28095419
PubMed Central PMC5283764
DOI 10.1371/journal.pgen.1006562
PII: PGENETICS-D-16-01639
Knihovny.cz E-zdroje

Many plant cells can be reprogrammed into a pluripotent state that allows ectopic organ development. Inducing totipotent states to stimulate somatic embryo (SE) development is, however, challenging due to insufficient understanding of molecular barriers that prevent somatic cell dedifferentiation. Here we show that Polycomb repressive complex 2 (PRC2)-activity imposes a barrier to hormone-mediated transcriptional reprogramming towards somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. We identify factors that enable SE development in PRC2-depleted shoot and root tissue and demonstrate that the establishment of embryogenic potential is marked by ectopic co-activation of crucial developmental regulators that specify shoot, root and embryo identity. Using inducible activation of PRC2 in PRC2-depleted cells, we demonstrate that transient reduction of PRC2 activity is sufficient for SE formation. We suggest that modulation of PRC2 activity in plant vegetative tissue combined with targeted activation of developmental pathways will open possibilities for novel approaches to cell reprogramming.

Zobrazit více v PubMed

Feher A (2015) Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849: 385–402. 10.1016/j.bbagrm.2014.07.005 PubMed DOI

Zimmerman JL (1993) Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell 5: 1411–1423. 10.1105/tpc.5.10.1411 PubMed DOI PMC

Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142: 229–241. 10.1242/dev.102103 PubMed DOI

Luo Y, Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202: 387–396. 10.1007/s004250050141 PubMed DOI

Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, et al. (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149: 549–563. PubMed PMC

Pillon E, Terzi M, Baldan B, Mariani P, Lo Schiavo FL (1996) A protocol for obtaining embryogenic cell lines from Arabidopsis. Plant J 9: 573–577. PubMed

Wu Y, Haberland G, Zhou C, Koop HU (1992) Somatic embryogenesis, formation of morphogenetic callus and normal development in zygotic embryos ofArabidopsis thaliana in vitro. Protoplasma 169: 89–96.

Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30: 349–359. PubMed

Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14: 1737–1749. 10.1105/tpc.001941 PubMed DOI PMC

Tsuwamoto R, Yokoi S, Takahata Y (2010) Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol 73: 481–492. 10.1007/s11103-010-9634-3 PubMed DOI

Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146: 1663–1672. 10.1104/pp.108.115832 PubMed DOI PMC

Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133: 653–663. 10.1104/pp.103.023499 PubMed DOI PMC

Lotan T, Ohto M, Yee KM, West MA, Lo R, et al. (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205. PubMed

Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, et al. (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 98: 11806–11811. 10.1073/pnas.201413498 PubMed DOI PMC

Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, et al. (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127: 803–816. PubMed PMC

Gaj M (2001) Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture 64: 39–46.

Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53: 1575–1580. PubMed

Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant Reprod 26: 181–196. 10.1007/s00497-013-0226-7 PubMed DOI PMC

von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture 69: 233–249.

Laugesen A, Helin K (2014) Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14: 735–751. 10.1016/j.stem.2014.05.006 PubMed DOI

Xiao J, Wagner D (2015) Polycomb repression in the regulation of growth and development in Arabidopsis. Curr Opin Plant Biol 23: 15–24. 10.1016/j.pbi.2014.10.003 PubMed DOI

Merini W, Calonje M (2015) PRC1 is taking the lead in PcG repression. Plant J 83: 110–120. 10.1111/tpj.12818 PubMed DOI

Mozgova I, Kohler C, Hennig L (2015) Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. Plant J 83: 121–132. 10.1111/tpj.12828 PubMed DOI

Derkacheva M, Hennig L (2014) Variations on a theme: Polycomb group proteins in plants. J Exp Bot 65: 2769–2784. 10.1093/jxb/ert410 PubMed DOI

Mozgova I, Hennig L (2015) The polycomb group protein regulatory network. Annu Rev Plant Biol 66: 269–296. 10.1146/annurev-arplant-043014-115627 PubMed DOI

Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, et al. (2011) Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. PLoS Genet 7: e1002014 10.1371/journal.pgen.1002014 PubMed DOI PMC

Muller K, Bouyer D, Schnittger A, Kermode AR (2012) Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS One 7: e51532 10.1371/journal.pone.0051532 PubMed DOI PMC

Aichinger E, Villar CB, Farrona S, Reyes JC, Hennig L, et al. (2009) CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet 5: e1000605 10.1371/journal.pgen.1000605 PubMed DOI PMC

Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, et al. (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131: 5263–5276. 10.1242/dev.01400 PubMed DOI

Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, et al. (2015) PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants 1: 15089 10.1038/nplants.2015.89 PubMed DOI

Ogas J, Cheng JC, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277: 91–94. PubMed

Bassuner BM, Lam R, Lukowitz W, Yeung EC (2007) Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep 26: 1–11. 10.1007/s00299-006-0207-5 PubMed DOI

Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4: 616–625. 10.1093/mp/ssr007 PubMed DOI PMC

Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, et al. (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59: 448–460. 10.1111/j.1365-313X.2009.03880.x PubMed DOI PMC

Enders TA, Strader LC (2015) Auxin activity: Past, present, and future. Am J Bot 102: 180–196. 10.3732/ajb.1400285 PubMed DOI PMC

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, et al. (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109–120. 10.1016/j.cell.2004.09.018 PubMed DOI

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449: 1053–1057. 10.1038/nature06206 PubMed DOI

Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, et al. (2011) Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7: e1002040 10.1371/journal.pgen.1002040 PubMed DOI PMC

Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4: e1000077 10.1371/journal.pgen.1000077 PubMed DOI PMC

Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, et al. (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5: e129 10.1371/journal.pbio.0050129 PubMed DOI PMC

Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129: 565–575. 10.1104/pp.001867 PubMed DOI PMC

Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, et al. (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446: 811–814. 10.1038/nature05703 PubMed DOI

Su YH, Liu YB, Bai B, Zhang XS (2014) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5: 792 10.3389/fpls.2014.00792 PubMed DOI PMC

Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, et al. (2006) Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25: 4638–4649. 10.1038/sj.emboj.7601311 PubMed DOI PMC

Muller-Xing R, Clarenz O, Pokorny L, Goodrich J, Schubert D (2014) Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana. Plant Cell 26: 2457–2471. 10.1105/tpc.114.123323 PubMed DOI PMC

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, et al. (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21: 508–514. 10.1016/j.cub.2011.02.020 PubMed DOI

Koo AJ, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59: 974–986. 10.1111/j.1365-313X.2009.03924.x PubMed DOI

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621–2632. 10.1104/pp.104.046367 PubMed DOI PMC

Schlereth A, Moller B, Liu W, Kientz M, Flipse J, et al. (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464: 913–916. 10.1038/nature08836 PubMed DOI

Xu C, Luo F, Hochholdinger F (2015) LOB Domain Proteins: Beyond Lateral Organ Boundaries. Trends Plant Sci. PubMed

Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNROSCHEN and DORNROSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134: 1653–1662. 10.1242/dev.001016 PubMed DOI

Kirch T, Simon R, Grunewald M, Werr W (2003) The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. Plant Cell 15: 694–705. 10.1105/tpc.009480 PubMed DOI PMC

Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223: 637–645. 10.1007/s00425-005-0114-y PubMed DOI

Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211: 756–759. 10.1007/s004250000387 PubMed DOI

Su Y, Su Y, Liu Y, Zhang X (2013) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regulation 69: 167–176.

Horstman A, Willemsen V, Boutilier K, Heidstra R (2014) AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci 19: 146–157. 10.1016/j.tplants.2013.10.010 PubMed DOI

Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63: 615–636. 10.1146/annurev-arplant-042811-105555 PubMed DOI

Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13: 2609–2618. 10.1105/tpc.010234 PubMed DOI PMC

Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, et al. (2015) PLETHORA Genes Control Regeneration by a Two-Step Mechanism. Curr Biol 25: 1017–1030. 10.1016/j.cub.2015.02.022 PubMed DOI PMC

Hayashida A, Takechi K, Sugiyama M, Kubo M, Itoh RD, et al. (2005) Isolation of Mutant Lines with Decreased Numbers of Chloroplasts per Cell from a Tagged Mutant Library of the Moss Physcomitrella patens. Plant biol (Stuttg) 7: 300–306. PubMed

Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22: 1169–1180. 10.1038/cr.2012.63 PubMed DOI PMC

Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18: 463–471. 10.1016/j.devcel.2010.02.004 PubMed DOI

Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 8: e69261 10.1371/journal.pone.0069261 PubMed DOI PMC

She W, Grimanelli D, Rutowicz K, Whitehead MW, Puzio M, et al. (2013) Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140: 4008–4019. 10.1242/dev.095034 PubMed DOI

He C, Chen X, Huang H, Xu L (2012) Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 8: e1002911 10.1371/journal.pgen.1002911 PubMed DOI PMC

Li H, Soriano M, Cordewener J, Muino JM, Riksen T, et al. (2014) The histone deacetylase inhibitor trichostatin a promotes totipotency in the male gametophyte. Plant Cell 26: 195–209. 10.1105/tpc.113.116491 PubMed DOI PMC

Uddenberg D, Valladares S, Abrahamsson M, Sundstrom JF, Sundas-Larsson A, et al. (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234: 527–539. 10.1007/s00425-011-1418-8 PubMed DOI PMC

Rodriguez-Sanz H, Moreno-Romero J, Solis MT, Kohler C, Risueno MC, et al. (2014) Changes in histone methylation and acetylation during microspore reprogramming to embryogenesis occur concomitantly with Bn HKMT and Bn HAT expression and are associated with cell totipotency, proliferation, and differentiation in Brassica napus. Cytogenet Genome Res 143: 209–218. 10.1159/000365261 PubMed DOI

Solis MT, El-Tantawy AA, Cano V, Risueno MC, Testillano PS (2015) 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. Front Plant Sci 6: 472 10.3389/fpls.2015.00472 PubMed DOI PMC

Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34: 107–114. PubMed

Bouveret R, Schonrock N, Gruissem W, Hennig L (2006) Regulation of flowering time by Arabidopsis MSI1. Development 133: 1693–1702. 10.1242/dev.02340 PubMed DOI

Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, et al. (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–1582. 10.1105/tpc.6.11.1567 PubMed DOI PMC

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971. 10.1105/tpc.9.11.1963 PubMed DOI PMC

Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, et al. (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17: 1540–1553. 10.1101/gad.257403 PubMed DOI PMC

Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223: 7–12. 10.1006/abio.1994.1538 PubMed DOI

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106 10.1186/gb-2010-11-10-r106 PubMed DOI PMC

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological) 57: 289–300.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace