Polycomb repressive complex 2 facilitates the transition from heterotrophy to photoautotrophy during seedling emergence
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
LQ200961901
Lumina quaeruntur
GAJU 049/2021/P
University of South Bohemia
Max Planck Society
Melbourne-Potsdam PhD Program
ANR-21-CE20-0007
INRAe AAP blanc BAP
ID:90254
e-INFRA CZ
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40515680
PubMed Central
PMC12236341
DOI
10.1093/plcell/koaf148
PII: 8162714
Knihovny.cz E-resources
- MeSH
- Arabidopsis * genetics metabolism growth & development physiology MeSH
- Autotrophic Processes MeSH
- Photosynthesis genetics MeSH
- Heterotrophic Processes genetics MeSH
- Histones metabolism MeSH
- Germination genetics MeSH
- Polycomb Repressive Complex 2 * metabolism genetics MeSH
- Arabidopsis Proteins * metabolism genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Seeds genetics growth & development metabolism MeSH
- Seedlings * genetics growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Histones MeSH
- Polycomb Repressive Complex 2 * MeSH
- Arabidopsis Proteins * MeSH
The seed-to-seedling transition represents a key developmental and metabolic switch in plants. Catabolism of seed storage reserves fuels germination and early seedling emergence until photosynthesis is established. The seed-to-seedling developmental transition is controlled by Polycomb repressive complex 2 (PRC2). However, the coordination of PRC2 activity and its contribution to transcriptional reprogramming during seedling establishment remain unknown. By analyzing H3K27me3 re-distribution and changes in gene transcription in the shoot and root tissues of heterotrophic and photoautotrophic Arabidopsis (Arabidopsis thaliana) seedlings, we reveal 2 phases of PRC2-mediated gene repression. The first phase is independent of light and photosynthesis and results in the irreversible repression of the embryo maturation program, marked by heterotrophy and reserve storage molecule biosynthesis. The second phase is associated with the repression of metabolic pathways related to germination and early seedling emergence, and H3K27me3 deposition in this phase is sensitive to photosynthesis inhibition. We show that preventing the transcription of the PRC2-repressed glyoxylate cycle gene ISOCITRATE LYASE promotes the vegetative phase transition in PRC2-depleted plants. Our findings underscore a key role of PRC2-mediated transcriptional repression in the coordinated metabolic and developmental switches that occur during seedling emergence and emphasize the close connection between metabolic and developmental identities.
See more in PubMed
Aichinger E, Villar CBR, Farrona S, Reyes JC, Hennig L, Köhler C. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet. 2009:5(8):e1000605. 10.1371/journal.pgen.1000605 PubMed DOI PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. Photomorphogenesis. Arabidopsis Book. 2012:10(2):e0147. 10.1199/tab.0147 PubMed DOI PMC
Baile F, Gómez-Zambrano ”, Calonje M. Roles of polycomb complexes in regulating gene expression and chromatin structure in plants. Plant Commun. 2022:3(1):100267. 10.1016/j.xplc.2021.100267 PubMed DOI PMC
Baile F, Merini W, Hidalgo I, Calonje M. EAR domain-containing transcription factors trigger PRC2-mediated chromatin marking in Arabidopsis. Plant Cell. 2021:33(8):2701–2715. 10.1093/plcell/koab139 PubMed DOI PMC
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015:43(W1):W39–W49. 10.1093/nar/gkv416 PubMed DOI PMC
Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L. Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell. 2011:23(11):4065–4078. 10.1105/tpc.111.087866 PubMed DOI PMC
Bourbousse C, Ahmed I, Roudier F, Zabulon G, Blondet E, Balzergue S, Colot V, Bowler C, Barneche F. Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis. PLoS Genet. 2012:8(7):e1002825. 10.1371/journal.pgen.1002825 PubMed DOI PMC
Bourbousse C, Barneche F, Laloi C. Plant chromatin catches the sun. Front Plant Sci. 2020:10:1728. 10.3389/fpls.2019.01728 PubMed DOI PMC
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell. 2002:14(8):1737–1749. 10.1105/tpc.001941 PubMed DOI PMC
Bouveret R, Schönrock N, Gruissem W, Hennig L. Regulation of flowering time by Arabidopsis MSI1. Development. 2006:133(9):1693–1702. 10.1242/dev.02340 PubMed DOI
Bouyer D, Roudier F, Heese M, Andersen ED, Gey D, Nowack MK, Goodrich J, Renou J-P, Grini PE, Colot V, et al. Polycomb repressive Complex 2 controls the embryo-to-seedling phase transition. PLoS Genet. 2011:7(3):e1002014. 10.1371/journal.pgen.1002014 PubMed DOI PMC
Bratzel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. Curr Biol. 2010:20(20):1853–1859. 10.1016/j.cub.2010.09.046 PubMed DOI
Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in PubMed DOI
Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol. 2009:36(3):199. 10.1071/FP08216 PubMed DOI
Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 2013:200(4):950–965. 10.1111/nph.12423 PubMed DOI
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y-H, Sung ZR, Goodrich J. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development. 2004:131(21):5263–5276. 10.1242/dev.01400 PubMed DOI
Charron JBF, He H, Elling AA, Denga XW. Dynamic landscapes of four histone modifications during deetiolation in arabidopsis. Plant Cell. 2009:21(12):3732–3748. 10.1105/tpc.109.066845 PubMed DOI PMC
Chen D, Molitor A, Liu C, Shen W-H. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth. Cell Res. 2010:20(12):1332–1344. 10.1038/cr.2010.151 PubMed DOI
Chen N, Veerappan V, Abdelmageed H, Kang M, Allen RD. HSI2/VAL1 silences AGL15 to regulate the developmental transition from seed maturation to vegetative growth in Arabidopsis. Plant Cell. 2018:30(3):600–619. 10.1105/tpc.17.00655 PubMed DOI PMC
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytol. 2020:227(3):840–856. 10.1111/nph.16559 PubMed DOI PMC
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the PubMed DOI
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium -mediated transformation of PubMed DOI
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018:46(W1):W242–W245. 10.1093/nar/gky354 PubMed DOI PMC
Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and shoot-specific genes. Plant J. 2004:38(2):366–379. 10.1111/j.1365-313X.2004.02051.x PubMed DOI
Daimon Y, Takabe K, Tasaka M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 2003:44(2):113–121. 10.1093/pcp/pcg038 PubMed DOI
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic acid biosynthesis and metabolism. Arabidopsis Book. 2011:9(9):e0156. 10.1199/tab.0156 PubMed DOI PMC
Dong Y, Uslu V V, Berr A, Singh G, Papdi C, Steffens VA, Heitz T, Ryabova LA. TOR represses stress responses through global regulation of H3K27 trimethylation in plants. J Exp Bot. 2023:74(5):1420–1431. 10.1093/jxb/erac486 PubMed DOI
Erban A, Martinez-Seidel F, Rajarathinam Y, Dethloff F, Orf I, Fehrle I, Alpers J, Beine-Golovchuk O, Kopka J. Multiplexed profiling and data processing methods to identify temperature-regulated primary metabolites using gas chromatography coupled to mass spectrometry. Methods Mol Biol. 2020:2156:203–239. 10.1007/978-1-0716-0660-5_15 PubMed DOI
Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol. 2006:142(3):839–854. 10.1104/pp.106.086694 PubMed DOI PMC
Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1989:40(1):503–537. 10.1146/annurev.pp.40.060189.002443 DOI
Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014:105:147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI
Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green. J Exp Bot. 2006:57(8):1725–1734. 10.1093/jxb/erj181 PubMed DOI
Gan ES, Xu Y, Ito T. Dynamics of H3K27me3 methylation and demethylation in plant development. Plant Signal Behav. 2015:10(9):e1027851. 10.1080/15592324.2015.1027851 PubMed DOI PMC
Gazzarrini S, Song L. LAFL factors in seed development and phase transitions. Annu Rev Plant Biol. 2024:75(1):459–488. 10.1146/annurev-arplant-070623-111458 PubMed DOI
Ginsawaeng O, Gorka M, Erban A, Heise C, Brueckner F, Hoefgen R, Kopka J, Skirycz A, Hincha DK, Zuther E. Characterization of the heat-stable proteome during seed germination in Arabidopsis with special focus on LEA proteins. Int J Mol Sci. 2021:22(15):8172. 10.3390/ijms22158172 PubMed DOI PMC
Graham IA. Seed storage oil mobilization. Annu Rev Plant Biol. 2008:59(1):115–142. 10.1146/annurev.arplant.59.032607.092938 PubMed DOI
Henninger M, Pedrotti L, Krischke M, Draken J, Wildenhain T, Fekete A, Rolland F, Müller MJ, Fröschel C, Weiste C, et al. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell. 2022:34:616–632. 10.1093/plcell/koab270 PubMed DOI PMC
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino JM, Angenent GC, Boutiliera K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol. 2017:175(2):848–857. 10.1104/pp.17.00232 PubMed DOI PMC
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical Journal. 2008:50(3):346–363. 10.1002/bimj.200810425 PubMed DOI
Ikeuchi M, Iwase A, Rymen B, Harashima H, Shibata M, Ohnuma M, Breuer C, Morao AK, De Lucas M, De Veylder L, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nat Plants. 2015:1(7):15089. 10.1038/nplants.2015.89 PubMed DOI
Jia H, McCarty DR, Suzuki M. Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression. Plant Physiol. 2013:163(3):1293–1305. 10.1104/pp.113.220988 PubMed DOI PMC
Jia H, Suzuki M, Mccarty DR. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Wiley Interdiscip Rev Dev Biol. 2014:3(1):135–145. 10.1002/wdev.126 PubMed DOI PMC
Josse E-M, Halliday KJ. Skotomorphogenesis: the dark Side of light signalling. Curr Biol. 2008:18(24):R1144–R1146. 10.1016/j.cub.2008.10.034 PubMed DOI
Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, Trivedi ZB, Abhayadev P V, Pinon V, Meyerowitz EM, Scheres B, et al. PLETHORA genes control regeneration by a two-step mechanism. Curr Biol. 2015:25(8):1017–1030. 10.1016/j.cub.2015.02.022 PubMed DOI PMC
Kassambara A. ggpubr:’ggplot2’-based publication ready plots. R package version 0.4.0. 2020. https://cran.r-project.org/web/packages/ggpubr/index.html.
Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. 2020. https://cran.r-project.org/web/packages/factoextra/index.html.
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019:37(8):907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC
Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A. 2012:109(28):11217–11221. 10.1073/pnas.1203746109 PubMed DOI PMC
Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.12. 2019. https://cran.r-project.org/web/packages/pheatmap/index.html.
Komsta L. outliers: Tests for Outliers. R package version 0.15. 2022. https://cran.r-project.org/web/packages/outliers/index.html.
Kubásek J, Hájek T, Duckett J, Pressel S, Šantrů”ek J. Moss stomata do not respond to light and CO 2 concentration but facilitate carbon uptake by sporophytes: a gas exchange, stomatal aperture, and 13 C-labelling study. New Phytol. 2021:230(5):1815–1828. 10.1111/nph.17208 PubMed DOI
Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet. 2011:7(4):e1002040. 10.1371/journal.pgen.1002040 PubMed DOI PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008:9(1):559. 10.1186/1471-2105-9-559 PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012:9(4):357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016:69(1):1–33. 10.18637/jss.v069.i01. DOI
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2018:31(3):291–307. 10.1007/s00497-018-0337-2 PubMed DOI
Liang Z, Zhu T, Yu Y, Wu C, Huang Y, Hao Y, Song X, Fu W, Yuan L, Cui Y, et al. PICKLE-mediated nucleosome condensing drives H3K27me3 spreading for the inheritance of Polycomb memory during differentiation. Mol Cell. 2024:84(18):3438–3454.e8. 10.1016/j.molcel.2024.08.018 PubMed DOI
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, et al. Acyl-lipid metabolism. Arabidopsis Book. 2013:11:e0161. 10.1199/tab.0161 PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001:25(4):402–408. 10.1006/meth.2001.1262 PubMed DOI
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell. 1998:93(7):1195–1205. 10.1016/S0092-8674(00)81463-4 PubMed DOI
Luedemann A, Strassburg K, Erban A, Kopka J. TagFinder for the quantitative analysis of gas chromatography—mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics. 2008:24(5):732–737. 10.1093/bioinformatics/btn023 PubMed DOI
Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, Zhu D, Questa JI, Saalbach G, Martins C, Dean C. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat Commun. 2022:13(1):5542. 10.1038/s41467-022-32897-7 PubMed DOI PMC
Molitor AM, Bu Z, Yu Y, Shen W-H. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 2014:10(1):e1004091. 10.1371/journal.pgen.1004091 PubMed DOI PMC
Mozgová I, Muñoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of PubMed DOI PMC
Mozgová I, Wildhaber T, Liu Q, Abou-Mansour E, L’Haridon F, Métraux JP, Gruissem W, Hofius D, Hennig L. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat Plants. 2015:1(9):1–8. 10.1038/nplants.2015.127 PubMed DOI
Mu J, Tan H, Zheng Q, Fu Y, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol. 2008:148(2):1042–1054. 10.1104/pp.108.126342 PubMed DOI PMC
Müller K, Bouyer D, Schnittger A, Kermode AR. Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS One. 2012:7(12):e51532. 10.1371/journal.pone.0051532 PubMed DOI PMC
Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch Y V, Liew LC, Lister R, Lewsey MG, Whelan J. Extensive transcriptomic and epigenomic remodelling occurs during PubMed DOI PMC
Neuwirth E. ColorBrewer palettes. R package version 1.1–3. 2022. https://cran.r-project.org/web/packages/RColorBrewer/index.html.
Nguyen NTT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, Bahin M, Collombet S, Vincens P, Thieffry D, et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res. 2018:46(W1):W209–W214. 10.1093/nar/gky317 PubMed DOI PMC
Pan J, Zhang H, Zhan Z, Zhao T, Jiang D. A REF6-dependent H3K27me3-depleted state facilitates gene activation during germination in Arabidopsis. J Genet Genomics. 2023:50(3):178–191. 10.1016/j.jgg.2022.09.001 PubMed DOI
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, et al. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife. 2016:5:1–21. 10.7554/eLife.17023 PubMed DOI PMC
Pohlert T. PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version 1.9.7. 2023. https://cran.r-project.org/web/packages/PMCMRplus/index.html.
Qüesta JI, Song J, Geraldo N, An H, Dean C. Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization. Science. 2016:353(6298):485–488. 10.1126/science.aaf7354 PubMed DOI
Quettier AL, Eastmond PJ. Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem. 2009:47(6):485–490. 10.1016/j.plaphy.2008.12.005 PubMed DOI
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016:44(W1):W160–W165. 10.1093/NAR/GKW257 PubMed DOI PMC
R Core Team R . R: A language and environment for statistical computing. 2021. R Foundation for Statistical Computing, Vienna, Austria.
R Core Team R . R: a language and environment for statistical computing. 2023. R Foundation for Statistical Computing, Vienna, Austria.
Ryabova LA, Robaglia C, Meyer C. Target of Rapamycin kinase: Central regulatory hub for plant growth and metabolism. J Exp Bot. 2019:70(8):2211–2216. 10.1093/jxb/erz108 PubMed DOI PMC
Šantrů”ek J, Vráblová M, Šimková M, Hronková M, Drtinová M, Květoa J, Vrábl D, Kubásek J, Macková J, Wiesnerová D, et al. Stomatal and pavement cell density linked to leaf internal CO2 concentration. Ann Bot. 2014:114(2):191–202. 10.1093/aob/mcu095 PubMed DOI PMC
Silva AT, Ligterink W, Hilhorst HWM. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in PubMed DOI PMC
Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HWM. A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in PubMed DOI PMC
Simon L, Probst A V. Maintenance and dynamic reprogramming of chromatin organization during development. Plant J. 2024:118(3):657–670. 10.1111/tpj.16119 PubMed DOI
Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A. 2001:98(20):11806–11811. 10.1073/pnas.201413498 PubMed DOI PMC
Stuttmann J, Barthel K, Martin P, Ordon J, Erickson JL, Herr R, Ferik F, Kretschmer C, Berner T, Keilwagen J, et al. Highly efficient multiplex editing: one-shot generation of 8× PubMed DOI
Suzuki M, Wang HHY, McCarty DR. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1 / ABSCISIC ACID INSENSITIVE 3—LIKE B3 genes. Plant Physiol. 2007:143(2):902–911. 10.1104/pp.106.092320 PubMed DOI PMC
Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y. SRplot: a free online platform for data visualization and graphing. PLoS One. 2023:18(11):e0294236. 10.1371/journal.pone.0294236 PubMed DOI PMC
Tan-Wilson AL, Wilson KA. Mobilization of seed protein reserves. Physiol Plant. 2012:145(1):140–153. 10.1111/j.1399-3054.2011.01535.x PubMed DOI
Thakare D, Tang W, Hill K, Perry SE. The MADS-domain transcriptional regulator agamous-Like15 promotes somatic embryo development in arabidopsis and soybean. Plant Physiol. 2008:146(4):1663–1672. 10.1104/pp.108.115832 PubMed DOI PMC
Tremblay BJM, Santini CP, Cheng Y, Zhang X, Rosa S, Qüesta JI. Interplay between coding and non-coding regulation drives the Arabidopsis seed-to-seedling transition. Nat Commun. 2024:15(1):1724. 10.1038/s41467-024-46082-5 PubMed DOI PMC
Tsukagoshi H, Morikami A, Nakamura K. Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci U S A. 2007:104(7):2543–2547. 10.1073/pnas.0607940104 PubMed DOI PMC
Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol. 2010:73(4–5):481–492. 10.1007/s11103-010-9634-3 PubMed DOI
Ture”ková V, Oklestková J, Žukauskaitė A, Eyer L, Novák O, Strnad M. A new abscisic acid conjugate, ABA-L-glutamate, determined in different plant species by combined immunoaffinity chromatography-tandem mass spectrometry. J Plant Growth Regul. 2024:43(12):4810–4825. 10.1007/s00344-024-11436-2 DOI
van Rensen JJS. Herbicides interacting withphotosystem II. In: Dodge AD, editors. Herbicides and Plant Metabolism. Cambridge: Cambridge University Press; 1990. p. 21–36 10.1017/CBO9780511752315.003. DOI
Van Zanten M, Tessadori F, Peeters AJM, Fransz P. Shedding light on large-scale chromatin reorganization in PubMed DOI
Wang M, Zhong Z, Gallego-Bartolomé J, Feng S, Shih YH, Liu M, Zhou J, Richey JC, Ng C, Jami-Alahmadi Y, et al. Arabidopsis TRB proteins function in H3K4me3 demethylation by recruiting JMJ14. Nat Commun. 2023:14(1):1736. 10.1038/s41467-023-37263-9 PubMed DOI PMC
Wang Q, Li M, Wu T, Zhan L, Li L, Chen M, Xie W, Xie Z, Hu E, Xu S. Exploring epigenomic datasets by ChIPseeker. Curr Protoc. 2022:2(10):e585. 10.1002/cpz1.585 PubMed DOI
Whittaker C, Dean C. The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol. 2017:338(21):1–8. 10.1146/annurev-cellbio-100616 PubMed DOI
Wickham H, Navarro D, Pedersen TL. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Wu Y, Shi L, Li L, Fu L, Liu Y, Xiong Y, Sheen J. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. J Exp Bot. 2019:70(8):2227–2238. 10.1093/jxb/erz028 PubMed DOI PMC
Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C, et al. Cis and trans determinants of epigenetic silencing by polycomb repressive complex 2 in Arabidopsis. Nat Genet. 2017:49(10):1546–1552. 10.1038/ng.3937 PubMed DOI
Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature. 2013:496(7444):181–186. 10.1038/nature12030 PubMed DOI PMC
Xu S, Grullon S, Ge K, Peng W. Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol Biol. 2014:1150:97–111. 10.1007/978-1-4939-0512-6_5 PubMed DOI PMC
Yang C, Bratzel F, Hohmann N, Koch M, Turck F, Calonje M. VAL-and AtBMI1-Mediated H2Aub initiate the switch from embryonic to postgerminative growth in arabidopsis. Curr Biol. 2013:23(14):1324–1329. 10.1016/j.cub.2013.05.050 PubMed DOI
Ye R, Wang M, Du H, Chhajed S, Koh J, Liu K, Shin J, Wu Y, Shi L, Xu L, et al. Glucose-driven TOR–FIE–PRC2 signalling controls plant development. Nature. 2022:609(7929):986–993. 10.1038/s41586-022-05171-5 PubMed DOI PMC
Yu G. ggplotify: convert plot to grob or ggplot object. R package version 0.1.2. 2019. https://cran.r-project.org/web/packages/ggplotify/vignettes/ggplotify.html.
Yuan L, Song X, Zhang L, Yu Y, Liang Z, Lei Y, Ruan J, Tan B, Liu J, Li C. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide Polycomb silencing in Arabidopsis. Nucleic Acids Res. 2021:49(1):98–113. 10.1093/nar/gkaa1129 PubMed DOI PMC
Zandalinas SI, Balfagón D, Gómez-Cadenas A, Mittler R. Plant responses to climate change: metabolic changes under combined abiotic stresses. J Exp Bot. 2022:73(11):3339–3354. 10.1093/jxb/erac073 PubMed DOI
Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW. A two-stepmodel for de novo activation of wuschel during plant shoot regeneration. Plant Cell. 2017:29(5):1073–1087. 10.1105/tpc.16.00863 PubMed DOI PMC
Zhou Y, Wang Y, Krause K, Yang T, Dongus JA, Zhang Y, Turck F. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis. Nat Genet. 2018:50(5):638–644. 10.1038/s41588-018-0109-9 PubMed DOI
Zuo J, Niu QW, Frugis G, Chua NH. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 2002:30(3):349–359. 10.1046/j.1365-313X.2002.01289.x PubMed DOI