Moss stomata do not respond to light and CO2 concentration but facilitate carbon uptake by sporophytes: a gas exchange, stomatal aperture, and 13 C-labelling study
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33458818
DOI
10.1111/nph.17208
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid (ABA), environment, evo-devo, gas exchange, photosynthesis, plant evolution, stomata, terrestrialization,
- MeSH
- Bryophyta * MeSH
- oxid uhličitý MeSH
- průduchy rostlin * MeSH
- uhlík MeSH
- zárodečné buňky rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid uhličitý MeSH
- uhlík MeSH
Stomata exert control on fluxes of CO2 and water (H2 O) in the majority of vascular plants and thus are pivotal for planetary fluxes of carbon and H2 O. However, in mosses, the significance and possible function of the sporophytic stomata are not well understood, hindering understanding of the ancestral function and evolution of these key structures of land plants. Infrared gas analysis and 13 CO2 labelling, with supporting data from gravimetry and optical and scanning electron microscopy, were used to measure CO2 assimilation and water exchange on young, green, ± fully expanded capsules of 11 moss species with a range of stomatal numbers, distributions, and aperture sizes. Moss sporophytes are effectively homoiohydric. In line with their open fixed apertures, moss stomata, contrary to those in tracheophytes, do not respond to light and CO2 concentration. Whereas the sporophyte cuticle is highly impermeable to gases, stomata are the predominant sites of 13 CO2 entry and H2 O loss in moss sporophytes, and CO2 assimilation is closely linked to total stomatal surface areas. Higher photosynthetic autonomy of moss sporophytes, consequent on the presence of numerous stomata, may have been the key to our understanding of evolution of large, gametophyte-independent sporophytes at the onset of plant terrestrialization.
Zobrazit více v PubMed
Assmann SM, Wang X-Q. 2001. From milliseconds to millions of years: guard cells and environmental responses. Current Opinion in Plant Biology 4: 421-428.
Baars C, Edwards D. 2008. Effects of elevated atmospheric CO2 on spore capsules of the moss Leptobryum pyriforme. Journal of Bryology 30: 36-40.
Bainard JD, Newmaster SG, Budke JM. 2020. Genome size and endopolyploidy evolution across the moss phylogeny. Annals of Botany 125: 543-555.
Brinda JC, Stark LR, Clark TA, Greenwood JL. 2016. Embryos of a moss can be hardened to desiccation tolerance: effects of rate of drying on the timeline of recovery and dehardening in Aloina ambigua (Pottiaceae). Annals of Botany 117: 153-163.
Brodribb TJ, McAdam SAM. 2011. Passive origins of stomatal control in vascular plants. Science 331: 582-585.
Brodribb TJ, McAdam SAM. 2017. Evolution of the stomatal regulation of plant water content. Plant Physiology 17: 639-649.
Brodribb TJ, Carriquía M, Delzon S, McAdam SAM, Holbrook SM. 2020. Advanced vascular function discovered in a widespread moss. Nature Plants 6: 273-279.
Browning AJ, Gunning BES. 1979. Structure and function of transfer cells in the sporophyte haustorium of Funaria hygrometrica Hedw.: I. The development and ultrastructure of the haustorium. Journal of Experimental Botany 30: 1233-1246.
Caine RS, Chater C, Kamisugi Y, Cuming AC, Beerling DJ, Gray JE. 2016. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens. Development 143: 3306-3314.
Cardoso AA, Batz TA, McAdam SAM. 2020. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiology 182: 547-554.
Chater CC, Kamisugi Y, Movahedi M, Fleming A, Cuming AC, Gray JE, Beerling DJ. 2011. Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Current Biology 21: 1025-1029.
Chater CC, Gray JE, Beerling DJ. 2013. Early evolutionary acquisition of stomatal control and development gene signalling networks. Current Opinion in Plant Biology 16: 638-646.
Chater CC, Caine RS, Tomek M, Wallace S, Kamisuga Y, Cuming AC, MacAlister CA, Casson S, Bergmann DC, Decker EL et al. 2016. Origin and function of stomata in the moss Physcomitrella patens. Nature Plants 2: e16179.
Chater CC, Caine RS, Fleming AJ, Gray JE. 2017. Origins and evolution of stomatal development. Plant Physiology 174: 624-638.
Creese C, Oberbauer S, Rundel P, Sack L. 2014. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances. New Phytologist 204: 92-104.
Doi M, Shimazuki K-I. 2008. The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiology 147: 922- 930.
Doi M, Wada M, Shimazaki K-I. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant and Cell Physiology 47: 748-755.
Doi M, Kitagawa Y, Shimazuki K-I. 2015. Stomatal blue light response is present in early vascular plants. Plant Physiology 169: 1205-1213.
Drake P, Froend R, Franks P. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495-505.
Duckett JG, Pressel S. 2018. The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes - two ignored dimensions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 373: e20160498.
Duckett JG, Pressel S, P’ng KMY, Renzaglia KS. 2009. Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. New Phytologist 183: 1053-1063.
Duckett JG. 2020. Towards completing understanding of genome size characters in plants: a commentary on ‘Genome size and endopolyploidy evolution across the moss phylogeny’ by J. D. Bainard, S. G. Newmaster and. J. M. Budke. Annals of Botany 125: iv-v.
Duckett JG, Pressel S. 2020. Of mosses and vascular plants. Nature Plants 6: 184-185.
Duckett JG, Pressel S. 2017. The colorful phenology of five common terricolous mosses in London, England. Bryophyte Diversity and Evolution 39: 44-56.
Edwards D, Kerp H, Hass H. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany 49: 255-278.
Elliott-Kingston C, Haworth M, Yearsley JM, Batke SP, Lawson T, McElwain JC. 2016. Does size matter? Atmospheric CO2 may be a stronger driver of stomatal closing rate than stomatal size in taxa that diversified under low CO2. Frontiers in Plant Science 7: e1253.
Fan L-M, Zhao Z, Assmann SM. 2004. Guard cells: a dynamic signaling model. Current Opinion in Plant Biology 7: 537-546.
Field KJ, Duckett JG, Cameron DD, Pressel S. 2015. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. Annals of Botany 115: 915-922.
Franks PJ, Britton-Harper ZJ. 2016. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? New Phytologist 211: 819-827.
Garner DLB, Paolillo DJ. 1973. On the functioning of stomates in Funaria. The Bryologist 76: 423-427.
Goffinet B, Buck WR, Shaw AJ. 2008. Morphology and classification of the Bryophyta. In: Goffinet B, Shaw AJ, eds. Bryophyte biology, 2nd edn. Cambridge, UK: Cambridge University Press, 55-138.
Haig D. 2013. Filial mistletoes: the functional morphology of moss sporophytes. Annals of Botany 111: 337-345.
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. 2020. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Current Biology 30: R642-R644.
Hartung W, Weiler EW, Volk OH. 1987. Immunochemical evidence that abscisic acid is produced by several species of Anthocerotae and Marchantiales. Bryologist 90: 393-400.
Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908.
Hõrak H, Kollist H, Merilo E. 2017. Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiology 174: 672-679.
Kenrick P, Wellman CH, Schneider H, Edgecombe GD. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 367: 519-536.
Koch K, Frahm J-P, Pollawatn R. 2009. The cuticle of the Buxbaumia viridis sporophyte. Flora - Morphology, Distribution, Functional Ecology of Plants 204: 34-39.
Kubásek J, Hájek T, Glime JM. 2014. Bryophyte photosynthesis in sunflecks: greater relative induction rate than in tracheophytes. Journal of Bryology 36: 110-117.
Kubásek J, Urban O, Santrůček J. 2013. C4 plants use fluctuating light less efficiently than do C3 plants: a study of growth, photosynthesis and carbon isotope discrimination. Physiologia Plantarum 149: 528-539.
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556-1570.
Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S et al. 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574: 679-685.
Ligrone R, Duckett JG, Renzaglia KS. 1993. The gametophyte-sporophyte junction in land plants. Advances in Botanical Research 19: 231-318.
Ligrone R, Duckett JG. 1994. Cytoplasmic polarity and endoplasmic microtubules associated with the nucleus and organelles are ubiquitous features of food conducting cells in bryoid mosses (Bryophyta). New Phytologist 127: 601-614.
Ligrone R, Duckett JG. 1996. Polarity and endoplasmic microtubules in food-conducting cells of mosses: an experimental study. New Phytologist 134: 503-516.
Ligrone R, Duckett JG, Renzaglia KS. 2000. Conducting tissues and phyletic relationships of bryophytes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355: 795-814.
Lind C, Dreyer I, López-Sanjurjo EJ, von Meyer K, Ishizaki K, Kohchi T, Lang D, Zhao Y, Kreuzer I, Al-Rasheid KAS et al. 2015. Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Current Biology 25: 928-935.
McAdam SAM, Brodribb TJ. 2012. Fern and lycophyte guard cells do not respond to endogenous abscisic acid. Plant Cell 24: 1510-1521.
McAdam SAM, Brodribb TJ. 2014. Separating active and passive influences on stomatal control of transpiration. Plant Physiology 164: 1578-1586.
McAdam SAM, Brodribb TJ. 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. Plant Physiology 167: 833-843.
McAdam SAM, Brodribb TJ. 2016. Linking turgor with ABA biosynthesis: implications for stomatal responses to vapour pressure deficit across land plants. Plant Physiology 171: 2008-2016.
McAdam SAM, Sussmilch FC, Brodribb TJ, Ross JJ. 2015. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species. AoB Plants 7: plv091.
McAdam SAM, Duckett JG, Sussmilch FC, Pressel S, Renzaglia KS, Hedrich R, Brodribb TJ, Merced A. 2021. Stomata: the holy grail of plant evolution. American Journal of Botany (in press).
McElwain JC, Steinthorsdottir M. 2017. Paleoecology, ploidy, paleoatmospheric composition, and developmental biology: a review of the multiple uses of fossil stomata. Plant Physiology 174: 650-656.
Merced A. 2015. Novel insights on the structure and composition of pseudostomata of Sphagnum. American Journal of Botany 102: 329-335.
Merced A, Renzaglia KS. 2013. Moss stomata in highly elaborated Oedipodium (Oedipodiaceae) and highly reduced Ephemerum (Pottiaceae) sporophytes are remarkably similar. American Journal of Botany 100: 2318-2327.
Merced A, Renzaglia K. 2014. Developmental changes in guard cell wall structure and pectin composition in the moss Funaria: implications for function and evolution of stomata. Annals of Botany 114: 1001-1010.
Merced A, Renzaglia KS. 2017. Structure, function and evolution of stomata from a bryological perspective. Bryophyte Diversity and Evolution 39: 7-20.
Merilo E, Jõesaar I, Brosché M, Kollist H. 2014. To open or to close: species-specific stomatal responses to simultaneously applied opposing environmental factors. New Phytologist 202: 499-508.
Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. 2018. The timescale of early land plant evolution. Proceedings of the National Academy of Sciences, USA 115: E2274-E2283.
Paolillo DJ, Bazzaz FA. 1968. Photosynthesis in sporophytes of Polytrichum and Funaria. The Bryologist 71: 335-343.
Pressel S, Goral T, Duckett JG. 2014. Stomatal differentiation and abnormal stomata in hornworts. Journal of Bryology 36: 87-103.
Pressel S, Renzaglia KS, Clymo RS, Duckett JG. 2018. Hornwort stomata do not respond actively to exogenous and environmental cues. Annals of Botany 122: 45-57.
Proctor MCF. 1977. Evidence on the carbon nutrition of moss sporophytes from 14CO2 uptake and the subsequent movement of labelled assimilate. Journal of Bryology 9: 375-386.
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D et al. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biology 28: 733-745.
Raschke K, Dittrich P. 1977. [14C]Carbon-dioxide fixation by isolated leaf epidermes with stomata closed or open. Planta 134: 69-75.
Raven JA. 2002. Selection pressures on stomatal evolution. New Phytologist 153: 371-386.
Renzaglia KS, Merced A. 2017. Structure, function and evolution of stomata from a bryological perspective. Bryophyte Diversity and Evolution 39: 7-20.
Renzaglia KS, Villarreal JC, Piatkowski BT, Lucas JR, Merced A. 2017. Hornwort stomata: architecture and fate shared with 400 million year old fossil plants without leaves. Plant Physiology 174: 788-797.
Renzaglia KS, Browning W, Merced A. 2020. With over 60 independent losses, stomata are expendable in mosses. Frontiers in Plant Science 11: e567.
Roelfsema MRG, Hedrich R. 2016. Do stomata of evolutionary distant species differ in sensitivity to environmental signals? New Phytologist 211: 767-770.
Sack FD, Paolillo DJ Jr. 1983a. Protoplasmic changes during stomatal development in Funaria. Canadian Journal of Botany 61: 2515-2526.
Sack FD, Paolillo DJ Jr. 1983b. Structure and development of walls in Funaria Stomata. American Journal of Botany. 70: 1019-1030.
Sack FD, Paolillo DJ Jr. 1983c. Stomatal pore and cuticle formation in Funaria. Protoplasma 116: 1-13.
de Sousa F, Foster PG, Donoghue PCJ, Schneider H, Cox CJ. 2018. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytologist 222: 565-575.
Sousa F, Civáň P, Brazão J, Foster PG, Cox CJ. 2020. The mitochondrial phylogeny of land plants shows support for Setaphyta under composition-heterogeneous substitution models. PeerJ 8: e8995.
Sussmilch FC, Brodribb TJ, McAdam SAM. 2017. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? Journal of Integrative Plant Biology 59: 240-260.
Sussmilch FC, Roelfsema MRG, Hedrich R. 2019. On the origins of osmotically driven stomatal movements. New Phytologist 222: 84-90.
Vondrák J, Kubásek J. 2013. Algal stacks and fungal stacks as adaptations to high light in lichens. The Lichenologist 45: 115-124.
Zhao C, Wang Y, Chan KX, Marchant DB, Franks PJ, Randall D, Tee EE, Chen G, Ramesh S, Phua SY et al. 2019. Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences, USA 116: 5015-5020.