Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
- MeSH
- Arabidopsis genetika MeSH
- DNA rostlinná genetika MeSH
- genetická transkripce MeSH
- genová dávka MeSH
- lidé MeSH
- mechy genetika MeSH
- nestabilita genomu MeSH
- oprava DNA * MeSH
- replikace DNA MeSH
- restrukturace chromatinu MeSH
- ribozomální DNA genetika MeSH
- stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- Bryophyta * MeSH
- druhová specificita MeSH
- půda MeSH
- rašeliníky * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study aims to investigate the changes in atmospheric deposition trends in Bulgaria, studied using the moss biomonitoring technique since 1995. For the first time, a paired (site-wise) comparison was performed after a critical review of the sampling networks and adjusting for location, the distance between the sampling points, and moss species. Data from the 2005/2006 and 2015/2016 moss surveys were chosen as instrumental neutron activation analysis was employed in both to determine the content of 34 elements (Al, As, Ba, Br, Са, Ce, Cl, Со, Cr, Cs, Fe, Hf, I, K, La, Mn, Na, Nd, Ni, Rb, Sb, Sc, Se, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Yb, Zn). In addition, Cd, Cu, and Pb were determined using complementary analytical methods: inductively coupled plasma atomic emission spectroscopy in 2015/2016 and atomic absorption spectroscopy in 2005/2006. For the subset of 57 routinely sampled locations in Bulgaria, hierarchical clustering on principal components and multiple factor analysis (MFA) were applied to assess the spatial trends in the 10 years elapsed between the surveys, as well as to characterise the origin of the determined elements. Elevation and distance between the sampling points were used as additional variables in the multiple factor analysis plane to ascertain their effect on the overall variance in the datasets. Distribution maps were constructed to illustrate the deposition patterns for the pollutant Pb. The results were consistent with decreased industrial output in the country, increased coal combustion and transport pollution, and construction of roads.
- MeSH
- Bryophyta * MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí MeSH
- průzkumy a dotazníky MeSH
- stopové prvky analýza MeSH
- těžké kovy analýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Bulharsko MeSH
A passive biomonitoring survey using terrestrial mosses was performed in a heavily polluted industrial region on the border between Czechia and Poland in a regular grid of 41 sampling points. The concentrations of 38 elements were determined in the moss samples, using Neutron Activation Analysis (NAA). Simultaneously, air pollution modelling was performed using the Czech reference methodology Symos'97 for the year of the sampling (2015) and 3 years prior (2012) in order to compare the results of both the approaches and evaluate the credibility of the moss biomonitoring method. The NAA results were transformed according to the principles of compositional data analysis and assessed using hierarchical clustering on principal components. The resulting clusters were compared with the results of air pollution modelling using one-way analysis of variance. The association of determined clusters with the pollution from industrial sources was confirmed only for the results of the 2012 modelling. This validates the complementarity of the air pollution modelling and the moss biomonitoring, ascertains the moss biomonitoring as a valid method for long-term pollution assessment and confirms one of the fundamentals of moss biomonitoring, the reflection of the atmospheric conditions prevailing in the period before the sampling.
- MeSH
- biologický monitoring MeSH
- Bryophyta * MeSH
- látky znečišťující vzduch analýza MeSH
- mechy * MeSH
- monitorování životního prostředí MeSH
- těžké kovy analýza MeSH
- znečištění ovzduší analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Peatlands are one of the most important ecosystems due to their biodiversity and abundant organic compounds; therefore, it is important to observe how different plant species in peatlands react to changing environmental conditions. Sphagnum spp. are the main component of peatlands and are considered as the creator of conditions favorable for carbon storage in the form of peat. Sphagnum angustifolium and Sphagnum fallax are taxonomically very close species. To examine their adaptability to climate change, we studied the morphology and pigment content of these two species from environmental manipulation sites in Poland, where the environment was continuously manipulated for temperature and precipitation. The warming of peat was induced by using infrared heaters, whereas total precipitation was reduced by a curtain that cuts the nighttime precipitation. Morphology of S. angustifolium stayed under climate manipulation relatively stable. However, the main morphological parameters of S. fallax were significantly affected by precipitation reduction. Thus, this study indicates S. angustifolium is better adapted in comparison to S. fallax for drier and warmer conditions.
Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 μM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 μg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently.
- MeSH
- antioxidancia metabolismus MeSH
- chlorofyl metabolismus MeSH
- kadmium analýza toxicita MeSH
- mechy účinky léků metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Studies on testate amoeba species distribution at small scales (i.e., single peatland sites) are rare and mostly focus on bogs or mineral-poor Sphagnum fens, leaving spatial patterns within mineral-rich fens completely unexplored. In this study, two mineral-rich fen sites of contrasting groundwater chemistry and moss layer composition were selected for the analysis of testate amoeba compositional variance within a single site. At each study site, samples from 20 randomly chosen moss-dominated plots were collected with several environmental variables being measured at each sampling spot. We also distinguished between empty shells and living individuals to evaluate the effect of empty shell inclusion on recorded species distribution. At the heterogeneous-rich Sphagnum-fen, a clear composition turnover in testate amoebae between Sphagnum-dominated and brown moss-dominated samples was closely related to water pH, temperature and redox potential. We also found notable species composition variance within the homogeneous calcareous fen, yet it was not as high as for the former site and the likely drivers of community assembly remained unidentified. The exclusion of empty shells provided more accurate data on species distribution as well as their relationship with some environmental variables, particularly moisture. Small-scale variability in species composition of communities seems to be a worthwhile aspect in testate amoeba research and should be considered in future sampling strategies along with a possible empty shell bias for more precise understanding of testate amoeba ecology and paleoecology.
- MeSH
- Bryophyta růst a vývoj MeSH
- Lobosea klasifikace fyziologie MeSH
- mikrobiota * MeSH
- mokřady MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
This study analyzed the impact of road transportation on the concentration of Zn, Ni, Pb, Co, and Cd in moss (Pleurozium schreberi). The study was carried out over five years near a national road running from the north to the east (Poland) in the area of Natura 2000 sites. Samples were collected at three significantly different locations: (1) near a sharp bend, (2) near a straight section of the road in a woodless area, and (3) in a slightly wooded area. At each location, moss samples were collected from sites situated 2, 4, 6, 8, 10, 12, and 14 m from the road edge. The highest Zn and Cd contents in the moss were recorded 6 m from the road edge near a sharp bend (where vehicles brake sharply and accelerate suddenly). At the same location, at a distance of 2 m, the highest Pb concentration was noted, and at a distance of 4 m from the road, the highest Ni concentration was noted. The Co concentration in the moss was the highest near the woodless straight section at a distance of 2 and 12 m from the road. The concentrations of Zn, Pb, Ni, Co (only at the woodless location), and Cd (at all locations) were significantly and negatively correlated with distance from the road.
- MeSH
- bioindikátory * MeSH
- doprava * MeSH
- mechy chemie MeSH
- monitorování životního prostředí metody MeSH
- těžké kovy chemie toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- brusnice s jedlými plody růst a vývoj mikrobiologie MeSH
- houby klasifikace genetika izolace a purifikace metabolismus MeSH
- lipnicovité růst a vývoj mikrobiologie MeSH
- methan metabolismus MeSH
- mikrobiota MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rašeliníky růst a vývoj mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The diverse forms of today's dominant vascular plant flora are generated by the sustained proliferative activity of sporophyte meristems at plants' shoot and root tips, a trait known as indeterminacy [1]. Bryophyte sister lineages to the vascular plants lack such indeterminate meristems and have an overall sporophyte form comprising a single small axis that ceases growth in the formation of a reproductive sporangium [1]. Genetic mechanisms regulating indeterminacy are well characterized in flowering plants, involving a feedback loop between class I KNOX genes and cytokinin [2, 3], and class I KNOX expression is a conserved feature of vascular plant meristems [4]. The transition from determinate growth to indeterminacy during evolution was a pre-requisite to vascular plant diversification, but mechanisms enabling the innovation of indeterminacy are unknown [5]. Here, we show that class I KNOX gene activity is necessary and sufficient for axis extension from an intercalary region of determinate moss shoots. As in Arabidopsis, class I KNOX activity can promote cytokinin biosynthesis by an ISOPENTENYL TRANSFERASE gene, PpIPT3. PpIPT3 promotes axis extension, and PpIPT3 and exogenously applied cytokinin can partially compensate for loss of class I KNOX function. By outgroup comparison, the results suggest that a pre-existing KNOX-cytokinin regulatory module was recruited into vascular plant shoot meristems during evolution to promote indeterminacy, thereby enabling the radiation of vascular plant shoot forms.