Maternal environmental effects and climate-smart seeds: unlocking epigenetic inheritance for crop innovation in the seed industry
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
40779787
PubMed Central
PMC12334248
DOI
10.1111/tpj.70407
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation, epigenetics, germination, intra/inter/transgenerational memory, maternal, seed priming, seeds, stress memory,
- MeSH
- epigeneze genetická * MeSH
- fyziologický stres MeSH
- klíčení genetika MeSH
- klimatické změny MeSH
- semena rostlinná * genetika fyziologie růst a vývoj MeSH
- šlechtění rostlin MeSH
- zemědělské plodiny * genetika fyziologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Seed production is facing a three-fold challenge: ensuring food security, maintaining sustainability, and adapting to climate change. Although most efforts have focused on genetic breeding and crop management, additional levers need to be explored to optimize plant tolerance to the accelerating climate change. A groundbreaking approach will be to capitalize on the ability of plants to naturally adjust their responses to fluctuating environments during the crop cycle and transmit stress-induced information to the next generation(s). This viewpoint aims at highlighting the potential application of maternal stress memory as a priming strategy to produce primed seedlots. This requires identifying the priming conditions among stress memory scenarios, defined according to the starting point of the new generation within the plant, that is, the fertilization. If the contribution of stress-induced epigenetic-associated mechanisms in inheritance patterns to promote germination and early growth development has been evidenced, the whole picture is not fully understood. Further investigations are required to characterize the maternally inherited plant stress imprints leading to higher stress tolerance of seedlots. Detailed characterization of the mechanisms of stress-induced maternally heritable seed traits could provide novel targets for the seed industry and open new avenues to deploy the potential of maternal stress memory for enhancing seed performances.
Physiology Ecology and Environment INRAE University Orléans EA 1207 USC 1328 45067 Orleans France
Pollen Biotechnology of CropPlantsGroup Biological Research Center Margarita Salas CSIC Madrid Spain
Syngenta SAS France 1228 Chemin de l'Hobit Saint Sauveur 31790 France
Univ Angers Institut Agro INRAE IRHS SFR QUASAV F 49000 Angers France
Zobrazit více v PubMed
Batista, R.A. & Köhler, C. (2020) Genomic imprinting in plants‐revisiting existing models. Genes & Development, 34, 24–36. PubMed PMC
Bennett, M.A. , Fritz, V.A. & Callan, N.W. (1992) Impact of seed treatments on crop stand establishment. HortTechnology, 2, 345–349.
Bewley, J.D. , Bradfor, K.J. , Hilhorst, H. & Nonogaki, H. (2013) Dormancy and the control of germination. In: Seeds, Physiology of Development, Germination and Dormancy. New York, NY, USA: Springer, pp. 247–297.
Bezodis, W. & Penfield, S. (2024) Maternal environmental control of progeny seed physiology: a review of concepts, evidence and mechanism. Seed Science Research, 34(2), 48–55.
Bilichak, A. & Kovalchuk, I. (2016) Transgenerational response to stress in plants and its application for breeding. Journal of Experimental Botany, 67, 2081–2092. PubMed
Bonduriansky, R. & Day, T. (2009) Nongenetic inheritance and its evolutionary implications. Annual Review of Ecology, Evolution, and Systematics, 40, 103–125.
Borges, F. , Donoghue, M.T.A. , LeBlanc, C. , Wear, E.E. , Tanurdžić, M. , Berube, B. et al. (2021) Loss of small‐RNA‐directed DNA methylation in the plant cell cycle promotes germline reprogramming and Somaclonal variation. Current Biology, 31, 591–600.e4. PubMed PMC
Brunel‐Muguet, S. , D'Hooghe, P. , Bataillé, M.P. , Larré, C. , Kim, T.H. , Trouverie, J. et al. (2015) Heat stress during seed filling interferes with sulfur restriction on grain composition and seed germination in oilseed rape (Brassica napus L.). Frontiers in Plant Science, 6, 1–12. PubMed PMC
Budhavarapu, V.N. , Chavez, M. & Tyler, J.K. (2013) How is epigenetic information maintained through DNA replication? Epigenetics & Chromatin, 6(1), 32. PubMed PMC
Calarco, J.P. , Borges, F. , Donoghue, M.T.A. , van Ex, F. , Jullien, P.E. , Lopes, T. et al. (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell, 151, 194–205. PubMed PMC
Chen, F. , Zhou, W. , Yin, H. , Luo, X. , Chen, W. , Liu, X. et al. (2020) Shading of the mother plant during seed development promotes subsequent seed germination in soybean. Journal of Experimental Botany, 71, 2072–2084. PubMed PMC
Choi, J. , Hyun, Y. , Kang, M.J. , in Yun, H. , Yun, J.Y. , Lister, C. et al. (2009) Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. The Plant Journal, 57, 918–931. PubMed
Crisp, P.A. , Ganguly, D. , Eichten, S.R. , Borevitz, J.O. & Pogson, B.J. (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Science Advances, 2, e1501340. PubMed PMC
Delamare, J. , Personeni, E. , Le Guédard, M. et al. (2025) Effects of thermopriming and bacteria‐mediated heat‐stress acclimation strategies on seed yield and quality criteria in Brassica napus cv aviso and Camelina sativa cv Calena. Planta, 261, 1–19. PubMed
Donohue, K. (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1520), 1059–1074. PubMed PMC
Dürr, C. , Brunel‐Muguet, S. , Girousse, C. , Larmure, A. , Larré, C. , Rolland‐Sabaté, A. et al. (2018) Changes in seed composition and germination of wheat (Triticum aestivum) and pea (Pisum sativum) when exposed to high temperatures during grain filling and maturation. Crop and Pasture Science, 69, 374–386.
Erdmann, R.M. & Picard, C.L. (2020) RNA‐directed DNA methylation. PLoS Genetics, 16(10), e1009034. PubMed PMC
Fahad, S. , Bajwa, A.A. , Nazir, U. et al. (2017) Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8, 1–16. PubMed PMC
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research, 1, 75–84.
Finch‐Savage, W.E. & Bassel, G.W. (2016) Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67, 567–591. PubMed
Footitt, S. , Müller, K. , Kermode, A.R. & Finch‐Savage, W.E. (2015) Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. The Plant Journal, 81, 413–425. PubMed PMC
Furci, L. , Jain, R. , Stassen, J. et al. (2019) Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife, 8, 1–23. PubMed PMC
Gao, G. , Li, J. , Li, H. , Li, F. , Xu, K. , Yan, G. et al. (2014) Comparison of the heat stress induced variations in DNA methylation between heat‐tolerant and heat‐sensitive rapeseed seedlings. Breeding Science, 64, 125–133. PubMed PMC
Gehring, M. (2019) Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming? The New Phytologist, 224, 91–96. PubMed PMC
Girija, A. , Hacham, Y. , Dvir, S. , Panda, S. , Lieberman‐Lazarovich, M. & Amir, R. (2023) Cystathionine γ‐synthase expression in seeds alters metabolic and DNA methylation profiles in Arabidopsis. Plant Physiology, 193, 595–610. PubMed
Gu, L. , Hanson, P.J. , Post, W.M. , Kaiser, D.P. , Yang, B. , Nemani, R. et al. (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world? Bioscience, 58, 253–262.
Gubler, F. , Millar, A.A. & Jacobsen, J.V. (2005) Dormancy release, ABA and pre‐harvest sprouting. Current Opinion in Plant Biology, 8, 183–187. PubMed
Haider, S. & Farrona, S. (2024) Decoding histone 3 lysine methylation: insights into seed germination and flowering. Current Opinion in Plant Biology, 81, 102598. PubMed
Hampton, J.G. , Conner, A.J. , Boelt, B. , Chastain, T.G. & Rolston, P. (2016) Climate change: seed production and options for adaptation. Agriculture, 6, 33.
Han, Z. , Crisp, P.A. , Stelpflug, S. , Kaeppler, S.M. , Li, Q. & Springer, N.M. (2018) Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics, 209, 983–995. PubMed PMC
Hatzig, S.V. , Nuppenau, J.N. , Snowdon, R.J. & Schießl, S.V. (2018) Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.). BMC Plant Biology, 18, 1–13. PubMed PMC
He, L. , Wu, W. , Zinta, G. , Yang, L. , Wang, D. , Liu, R. et al. (2018) A naturally occurring epiallele associates with leaf senescence and local climate adaptation in PubMed PMC
Hemenway, E.A. & Gehring, M. (2023) Epigenetic regulation during plant development and the capacity for epigenetic memory. Annual Review of Plant Biology, 22, 87–109. Available from: 10.1146/annurev-arplant-070122-025047 PubMed DOI PMC
Herman, J.J. , Sultan, S.E. , Horgan‐Kobelski, T. & Riggs, C. (2012) Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil. Integrative and Comparative Biology, 52, 77–88. PubMed
Hilker, M. & Schmülling, T. (2019) Stress priming, memory, and signalling in plants. Plant, Cell & Environment, 42, 753–761. PubMed
Hilker, M. , Schwachtje, J. , Baier, M. , Balazadeh, S. , Bäurle, I. , Geiselhardt, S. et al. (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 91, 1118–1133. PubMed
Hossain, M.A. , Li, Z.G. , Hoque, T.S. , Burritt, D.J. , Fujita, M. & Munné‐Bosch, S. (2018) Heat or cold priming‐induced cross‐tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma, 255, 399–412. PubMed
Hsieh, P. , He, S. , Buttress, T. , Gao, H. , Couchman, M. , Fischer, R.L. et al. (2016) Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues. Proceedings of the National Academy of Sciences of the United States of America, 113, 15132–15137. Available from: 10.1073/pnas.1619074114 PubMed DOI PMC
Ibañez, V.N. & Quadrana, L. (2023) Shaping inheritance: how distinct reproductive strategies influence DNA methylation memory in plants. Current Opinion in Genetics & Development, 78, 102018. PubMed
Ingouff, M. , Rademacher, S. , Holec, S. , Šoljić, L. , Xin, N. , Readshaw, A. et al. (2010) Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Current Biology, 20, 2137–2143. PubMed
IPCC . (2021) Summary for policymakers. In: Climate change 2021: the physical science basis. In: Masson‐Delmotte, V. , Zhai, P. , Pirani, A. , Connors, S.L. , Péan, C. , Berger, S. et al. (Eds.) Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 3–32. Available from: 10.1017/9781009157896.001 DOI
Jo, L. & Nodine, M.D. (2024) To remember or forget: insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos. Current Opinion in Plant Biology, 81, 102612. PubMed
Kakoulidou, I. , Avramidou, E.V. , Baránek, M. et al. (2021) Epigenetics for crop improvement in times of global change. Biology (Basel)., 10, 1–46. PubMed PMC
Kambona, C.M. , Koua, P.A. , Léon, J. & Ballvora, A. (2023) Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.). Physiologia Plantarum, 175, e13951. PubMed
Karavolias, N.G. , Horner, W. , Abugu, M.N. & Evanega, S.N. (2021) Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems, 5, 685801.
Khoury, C.K. , Brush, S. , Costich, D.E. , Curry, H.A. , de Haan, S. , Engels, J.M.M. et al. (2022) Crop genetic erosion: understanding and responding to loss of crop diversity. The New Phytologist, 233, 84–118. PubMed
Kumar, S. & Mohapatra, T. (2021) Dynamics of DNA methylation and its functions in plant growth and development. Frontiers in Plant Science, 12, 596236. PubMed PMC
Lagiotis, G. , Madesis, P. & Stavridou, E. (2023) Echoes of a stressful past: abiotic stress memory in crop plants towards enhanced adaptation. Agriculture, 13, 1–30.
Lamelas, L. , Hidalgo, C.L. & Valledor, L. (2024) Like mother like son : transgenerational memory and cross ‐ tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata. Plant, Cell & Environment, 47(5), 1640–1655. PubMed
Lamichhane, J.R. (2021) (2021) Rising risks of late‐spring frosts in a changing climate. Nature Climate Change, 117(11), 554–555.
Lämke, J. & Bäurle, I. (2017) Epigenetic and chromatin‐based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18, 124. PubMed PMC
Leprince, O. , Pellizzaro, A. , Berriri, S. , Buitink, J. & Bassel, G. (2016) Late seed maturation: drying without dying. Journal of Experimental Botany, 68(4), 827–841. PubMed
Liu, H. , Able, A.J. & Able, J.A. (2020) Transgenerational effects of water‐deficit and heat stress on germination and seedling vigour—new insights from durum wheat microRNAs. Plants, 9, 189. PubMed PMC
Liu, H. , Able, A.J. & Able, J.A. (2022) Priming crops for the future: rewiring stress memory. Trends in Plant Science, 27, 699–716. PubMed
Lobell, D.B. , Hammer, G.L. , Chenu, K. , Zheng, B. , Mclean, G. & Chapman, S.C. (2015) The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21, 4115–4127. PubMed
Longin, C.F.H. & Würschum, T. (2016) Back to the future – tapping into ancient grains for food diversity. Trends in Plant Science, 21, 731–737. PubMed
Magno Massuia de Almeida, L. , Avice, J.C. , Morvan Bertrand, A. , Mollier, A. & Brunel‐Muguet, S. (2020) Modelling Memory: do crop models need to become nostalgic. In: Crop Modelling For the Future‐ Second International Crop Modelling Symposium, p. 268.
Maiorano, A. , Reyneri, A. , Sacco, D. , Magni, A. & Ramponi, C. (2009) A dynamic risk assessment model (FUMAgrain) of fumonisin synthesis by fusarium verticillioides in maize grain in Italy. Crop Protection, 28, 243–256.
Manning, K. , Tör, M. , Poole, M. , Hong, Y. , Thompson, A.J. , King, G.J. et al. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP‐box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38, 948–952. PubMed
Magno Massuia de Almeida, L. , Avice, J.C. , Morvan‐Bertrand, A. et al. (2021) High temperature patterns at the onset of seed maturation determine seed yield and quality in oilseed rape (Brassica napus L.) in relation to sulphur nutrition. Environmental and Experimental Botany, 185, 104400.
Magno Massuia de Almeida, L. , Coulon, M. , Avice, J.C. et al. (2022) Effects of two‐generational heat stress exposure at the onset of seed maturation on seed yield and quality in Brassica napus L. Environmental and Experimental Botany, 195, 104788.
Mathieu, O. , Reinders, J. , Čaikovski, M. , Smathajitt, C. & Paszkowski, J. (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell, 130, 851–862. PubMed
McCauley, G.N. & Way, M.O. (2002) Drain and harvest timing affects on rice grain drying and whole‐milled grain. Field Crops Research, 74, 163–172.
Mittler, R. (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11, 15–19. PubMed
Mojzes, A. , Kalapos, T. & Kröel‐Dulay, G. (2021) Drought in maternal environment boosts offspring performance in a subordinate annual grass. Environmental and Experimental Botany, 187, 104472.
Molitor, A.M. , Bu, Z. , Yu, Y. & Shen, W.H. (2014) Arabidopsis AL PHD‐PRC1 complexes promote seed germination through H3K4me3‐to‐H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genetics, 10, 1004091. PubMed PMC
Mordor Intelligence (n.d.). Available from: https://www.mordorintelligence.com/industry-reports/seeds-industry
Nguyen, C.D. , Chen, J. , Clark, D. , Perez, H. & Huo, H.A. (2021) Effects of maternal environment on seed germination and seedling vigor of petunia × hybrida under different abiotic stresses. Plants, 10, 1–13. PubMed PMC
Nosalewicz, A. , Siecińska, J. , Śmiech, M. , Nosalewicz, M. , Wiącek, D. , Pecio, A. et al. (2016) Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environmental and Experimental Botany, 131, 120–127.
Ono, A. & Kinoshita, T. (2021) Epigenetics and plant reproduction: multiple steps for responsibly handling succession. Current Opinion in Plant Biology, 61, 102032. PubMed
Palmgren, M.G. , Edenbrandt, A.K. , Vedel, S.E. , Andersen, M.M. , Landes, X. , Østerberg, J.T. et al. (2015) Are we ready for back‐to‐nature crop breeding? Trends in Plant Science, 20, 155–164. PubMed
Paparella, S. , Araújo, S.S. , Rossi, G. , Wijayasinghe, M. , Carbonera, D. & Balestrazzi, A. (2015) Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281–1293. PubMed
Paszkowski, J. & Grossniklaus, U. (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Current Opinion in Plant Biology, 14, 195–203. PubMed
Penfield, S. & MacGregor, D.R. (2017) Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany, 68, 819–825. PubMed
Pourkheirandish, M. , Golicz, A.A. , Bhalla, P.L. & Singh, M.B. (2020) Global role of crop genomics in the face of climate change. Frontiers in Plant Science, 11, 522800. PubMed PMC
Racette, K. , Zurweller, B. , Tillman, B. & Rowland, D. (2020) Transgenerational stress memory of water deficit in peanut production. Field Crops Research, 248, 107712.
Ramirez‐Prado, J.S. , Ariel, F. , Benhamed, M. & Crespi, M. (2017) Plant epigenetics: non‐coding rnas as emerging regulators. In: Rajewsky, N. , Jurga, S. & Barciszewski, J. (Eds.) Plant epigenetics. RNA technologies. Cham: Springer. Available from: 10.1007/978-3-319-55520-1_7 DOI
Rasmann, S. , De Vos, M. , Casteel, C.‐L. , Tian, D. et al. (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology, 158(2), 854–863. PubMed PMC
Reed, R.C. , Bradford, K.J. & Khanday, I. (2022) Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128, 450–459. PubMed PMC
Righetti, K. , Vu, J.L. , Pelletier, S. , Vu, B.L. , Glaab, E. , Lalanne, D. et al. (2015) Inference of longevity‐related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense‐related pathways. Plant Cell, 27, 2692–2708. PubMed PMC
Rising, J. & Devineni, N. (2020) Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nature Communications, 11, 4991. PubMed PMC
Rötter, R.P. , Palosuo, T. , Pirttioja, N.K. , Dubrovsky, M. , Salo, T. , Fronzek, S. et al. (2011) What would happen to barley production in Finland if global warming exceeded 4 °C? A model‐based assessment. European Journal of Agronomy, 35, 205–214.
Rowland, D.L. , Faircloth, W.H. , Payton, P. , Tissue, D.T. , Ferrell, J.A. , Sorensen, R.B. et al. (2012) Primed acclimation of cultivated peanut (Arachis hypogaea L.) through the use of deficit irrigation timed to crop developmental periods. Agricultural Water Management, 113, 85–95.
Schlenker, W. & Roberts, M.J. (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594–15598. PubMed PMC
Sehgal, A. , Sita, K. , Siddique, K.H.M. et al. (2018) Drought or/and heat‐stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 871, 388913. PubMed PMC
Sheldon, C.C. , Hills, M.J. , Lister, C. , Dean, C. , Dennis, E.S. & Peacock, W.J. (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proceedings of the National Academy of Sciences of the United States of America, 105, 2214–2219. PubMed PMC
Stroud, H. , Ding, B. , Simon, S.A. , Feng, S. , Bellizzi, M. , Pellegrini, M. et al. (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife, 2013, 1–14. PubMed PMC
Suter, L. & Widmer, A. (2013) Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana. PLoS One, 8, e80819. PubMed PMC
Tao, Z. , Shen, L. , Gu, X. , Wang, Y. , Yu, H. & He, Y. (2017) Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 551, 124–128. PubMed
The International Seed Testing Association (ISTA) . (2021) Seed vigour testing. In: International rules for seed testing. Bassersdorf, Sweden: ISTA, pp. i‐15–i‐20.
Tirot, L. & Jullien, P.E. (2022) Epigenetic dynamics during sexual reproduction: At the nexus of developmental control and genomic integrity. Current Opinion in Plant Biology, 69, 102278. PubMed
Tonosaki, K. , Fujimoto, R. , Dennis, E.S. , Raboy, V. & Osabe, K. (2022) Will epigenetics be a key player in crop breeding? Frontiers in Plant Science, 13, 958350. PubMed PMC
Ueda, M. & Seki, M. (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response1[OPEN]. Plant Physiology, 182, 15–26. PubMed PMC
Valentin‐Silva, A. , Torre, F.D. & França, M.G.C. (2023) Remember its origin: maternal effects during seed production influence the germination responses, seed traits, and initial root growth of Piper umbellatum. International Journal of Plant Sciences, 184, 659–669.
Van Dooren, T.J.M. , Silveira, A.B. , Gilbault, E. et al. (2020) Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. Journal of Experimental Botany, 71, 3588–3602. PubMed PMC
Vancostenoble, B. , Blanchet, N. , Langlade, N.B. & Bailly, C. (2022) Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939.
Vasseur, F. , Cornet, D. , Beurier, G. , Messier, J. , Rouan, L. , Bresson, J. et al. (2022) A perspective on plant Phenomics: coupling deep learning and near‐infrared spectroscopy. Frontiers in Plant Science, 13, 985970. PubMed PMC
Vatov, E. & Gechev, T. (2025) Recent evidence for transgenerational adaptation resulting from stress induced changes in the cytosine methylation landscape of plants. Plant Stress, 16, 100812.
Vincent, C. , Rowland, D. , Schaffer, B. , Bassil, E. , Racette, K. & Zurweller, B. (2020) Primed acclimation: a physiological process offers a strategy for more resilient and irrigation‐efficient crop production. Plant Science, 295, 110240. Available from: 10.1016/j.plantsci.2019.110240 PubMed DOI
Vincent, C. , Rowland, D.L. & Schaffer, B. (2015) The potential for primed acclimation in papaya (Carica papaya L.): determination of critical water deficit thresholds and physiological response variables. Scientia Horticulturae, 194, 344–352.
Wang, F. & Higgins, J.M.G. (2013) Histone modications and mitosis: countermarks, landmarks, and bookmarks. Trends in Cell Biology, 23, 175–184. PubMed
Weissmann, E.A. , Yadav, R.N. , Seth, R. & Udaya Bhaskar, K. (2023) Principles of Variety Maintenance for Quality Seed Production. In: Dadlani, M. & Yadava, D.K. (Eds.) Seed Science and Technology. Singapore: Springer.
Wibowo, A. , Becker, C. , Marconi, G. , Durr, J. , Price, J. , Hagmann, J. et al. (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife, 5, e13546. PubMed PMC
Wijewardana, C. , Raja, R.K. , Krutz, J.L. , Gao, W. & Bellaloui, N. (2019) Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS One, 14(9), e0214977. PubMed PMC
WMO (World Meteorological Organization) . 2022. https://library.wmo.int/records/item/66214‐state‐of‐the‐global‐climate‐2022.
Wu, X. , Zhang, X. , Huang, B. , Han, J. & Fang, H. (2023) Advances in biological functions and mechanisms of histone variants in plants. Frontiers in Genetics, 14, 1–11. PubMed PMC
Yadav, N.S. , Titov, V. , Ayemere, I. , Byeon, B. , Ilnytskyy, Y. & Kovalchuk, I. (2022) Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring. Frontiers in Plant Science, 13, 728167. PubMed PMC
Yawson, D.O. & Adu, M.O. (2023) Climate change, soil saturation, and risk of yield penalties to key cereal crops: a neglected issue in agri‐food system adaptation. In: Leal Filho, W. , Kovaleva, M. , Alves, F. & Abubakar, I.R. (Eds.) Climate change strategies: handling the challenges of adapting to a changing climate. Climate change management. Cham: Springer. Available from: 10.1007/978-3-031-28728-2_27 DOI
Zhan, J. & Meyers, B.C. (2023) Plant small RNAs: their biogenesis, regulatory roles, and functions. Annual Review of Plant Biology, 74, 21–51. PubMed
Zhang, H. , Lang, Z. & Zhu, J.K. (2018) Dynamics and function of DNA methylation in plants. Nature Reviews. Molecular Cell Biology, 19, 489–506. PubMed
Zhang, Y.Y. , Fischer, M. , Colot, V. & Bossdorf, O. (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. The New Phytologist, 197, 314–322. PubMed
Zhao, T. , Zhan, Z. & Jiang, D. (2019) Histone modifications and their regulatory roles in plant development and environmental memory. Journal of Genetics and Genomics, 46, 467–476. PubMed
Zheng, B. , Chenu, K. , Fernanda Dreccer, M. & Chapman, S.C. (2012) Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 18, 2899–2914. PubMed
Zheng, X. , Chen, L. , Xia, H. , Wei, H. , Lou, Q. , Li, M. et al. (2017) Transgenerational epimutations induced by multi‐generation drought imposition mediate rice plant's adaptation to drought condition. Scientific Reports, 71, 1–13. PubMed PMC