Field-based tests for determining critical speed among runners and its practical application: a systematic review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
40134905
PubMed Central
PMC11933073
DOI
10.3389/fspor.2025.1520914
Knihovny.cz E-zdroje
- Klíčová slova
- critical power, endurance, performance assessment, testing methods, testing protocols,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
INTRODUCTION: This review focuses exclusively on field-based critical speed (CS) tests for runners, aiming to evaluate key testing conditions to optimize field-based assessments and their practical applications. METHODS: A systematic search was conducted in PubMed, Scopus, SPORTDiscus, and Web of Science databases in July 2024 using terms like "critical power," "critical speed," "testing," and "field condition" along with related keywords. Following PRISMA 2020 guidelines, studies were systematically identified, screened, assessed for eligibility, and evaluated for the validity, reliability, and applicability of field-based methods for determining CS in runners. RESULTS: From an initial pool of 450 studies, 19 met the inclusion criteria. The time trial (TT) test and the 3-minute all-out test (3MT) emerged as the most frequently used field-based methods, demonstrating high reliability when conducted under specific conditions. CONCLUSION: This review demonstrates that while field-based CS testing is a practical alternative to lab-based assessments, obtaining reliable results relies on following recommended testing settings, particularly for TT tests. By outlining the practical applications and conditions necessary for accurate CS assessment, this review supports athletes and coaches in applying CS testing effectively to enhance training strategies and performance.
Zobrazit více v PubMed
Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. (2010) 42:1876–90. 10.1249/MSS.0b013e3181d9cf7f PubMed DOI
Jones AM, Vanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. (2017) 47:65–78. 10.1007/s40279-017-0688-0 PubMed DOI PMC
Fukuda DH, Kendall KL, Smith AE, Dwyer TR, Stout JR. The development of physiological profiles and identification of training needs in NCAA female collegiate rowers using isoperformance curves. Eur J Appl Physiol. (2011) 111:679–85. 10.1007/s00421-010-1683-4 PubMed DOI
Kendall KL, Fukuda DH, Smith AE, Cramer JT, Stout JR. Predicting maximal aerobic capacity from the critical velocity test in female collegiate rowers. J Strength Cond Res. (2012) 26:733–8. 10.1519/JSC.0b013e318225f3ac PubMed DOI
Lord C, Blazevich AJ, Abbiss CR, Ma’ayah F. Reliability and validity of maximal mean and critical speed and metabolic power in Australian youth soccer players. J Human Kinet. (2020) 73:93–102. 10.2478/hukin-2019-0135 PubMed DOI PMC
Nimmerichter A, Novak N, Triska C, Prinz B, Breese BC. Validity of treadmill-derived critical speed on predicting 5000-meter track-running performance. J Strength Cond Res. (2017) 31:706–14. 10.1519/JSC.0000000000001529 PubMed DOI
Chorley A, Lamb KL. The application of critical power, the work capacity above critical power (W′), and its reconstitution: a narrative review of current evidence and implications for cycling training prescription. Sports. (2020) 8:123. 10.3390/sports8090123 PubMed DOI PMC
Penteado R, Salvador AF, Corvino RB, Cruz R, Lisbôa FD, Caputo F, et al. Physiological responses at critical running speed during continuous and intermittent exhaustion tests. Sci Sports. (2014) 29:e99–105. 10.1016/j.scispo.2014.02.003 DOI
Lipková L, Kumstát M, Struhár I. Determination of critical power using different possible approaches among endurance athletes: a review. IJERPH. (2022) 19:7589. 10.3390/ijerph19137589 PubMed DOI PMC
Ozkaya O, Balci GA, As H, Cabuk R, Norouzi M. Grey zone: a gap between heavy and severe exercise domain. J Strength Cond Res. (2022) 36:113–20. 10.1519/JSC.0000000000003427 PubMed DOI
Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the “gold standard”. Physiol Rep. (2019) 7:e14098. 10.14814/phy2.14098 PubMed DOI PMC
Pethick J, Winter SL, Burnley M. Physiological evidence that the critical torque is a phase transition, not a threshold. Med Sci Sports Exerc. (2020) 52:2390–401. 10.1249/MSS.0000000000002389 PubMed DOI PMC
Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. (2016) 48:2320–34. 10.1249/MSS.0000000000000939 PubMed DOI PMC
Aguiar RAD, Salvador AF, Penteado R, Faraco HC, Pettitt RW, Caputo F. Reliability and validity of the 3-min all-out running test. Rev Bras Ciênc Esporte. (2018) 40:288–94. 10.1016/j.rbce.2018.02.003 DOI
Broxterman RM, Ade CJ, Poole DC, Harms CA, Barstow TJ. A single test for the determination of parameters of the speed–time relationship for running. Res Physiol Neurobi. (2013) 185:380–5. 10.1016/j.resp.2012.08.024 PubMed DOI
Triska C, Karsten B, Nimmerichter A, Tschan H. Iso-duration determination of D′ and CS under laboratory and field conditions. Int J Sports Med. (2017) 38:527–33. 10.1055/s-0043-102943 PubMed DOI
Sawyer BJ, Morton RH, Womack CJ, Gaesser GA. VO2max may not be reached during exercise to exhaustion above critical power. Med Sci Sports Exerc. (2012) 44:1533–8. 10.1249/MSS.0b013e31824d2587 PubMed DOI
Hill DW. The critical power concept: a review. Sports Med. (1993) 16:237–54. 10.2165/00007256-199316040-00003 PubMed DOI
Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport. Int J Sports Physiol Perform. (2011) 6:128–36. 10.1123/ijspp.6.1.128 PubMed DOI
Corrêa HL, Ribeiro HS, Cunha VA, Baiao VM, de Melo WM, Ferreira RNB, et al. Critical velocity estimates running velocity in a 10-km running race in recreational runners. Rev Bras Cineantropom Desempenho hum. (2020) 22:e59852. 10.1590/1980-0037.2020v22e59852 DOI
Kranenburg KJ, Smith DJ. Comparison of critical speed determined from track running and treadmill tests in elite runners. Med Sci Sports Exerc. (1996) 28:614–8. 10.1097/00005768-199605000-00013 PubMed DOI
Van Rassel CR, Sales KM, Ajayi OO, Nagai K, MacInnis MJ. A comparison of critical speed and critical power in runners using stryd running power. Int J Sports Physiol Perform. (2024) 19:84–7. 10.1123/ijspp.2023-0260 PubMed DOI
Ruiz-Alias SA, Ñancupil-Andrade AA, Pérez-Castilla A, García-Pinillos F. Running critical power and W′: influence of the environment, timing and time trial order. Int J Sports Med. (2023) 45:309–15. 10.1055/a-2201-7081 PubMed DOI
Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. (1965) 8:329–38. 10.1080/00140136508930810 DOI
Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. (1981) 24:339–50. 10.1080/00140138108924856 PubMed DOI
Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol. (1992) 64:153–7. 10.1007/BF00717953 PubMed DOI
Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, et al. Does critical swimming velocity represent exercise intensity at maximal lactate steady state? Eur J Appl Physiol. (1993) 66:90–5. 10.1007/BF00863406 PubMed DOI
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br Med J. (2021) 372:n71. 10.1136/bmj.n71 PubMed DOI PMC
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. (2016) 5:210. 10.1186/s13643-016-0384-4 PubMed DOI PMC
Brysbaert M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J Cogn. (2019) 2:16. 10.5334/joc.72 PubMed DOI PMC
Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun He. (1998) 52:377–84. 10.1136/jech.52.6.377 PubMed DOI PMC
Figueiredo DH, Figueiredo DH, Manoel FDA, Machado FA. Peak running velocity or critical speed under field conditions: which best predicts 5-km running performance in recreational runners? Front Physiol. (2021) 12:680790. 10.3389/fphys.2021.680790 PubMed DOI PMC
Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sports Physiol Perform. (2014) 9:931–5. 10.1123/ijspp.2013-0507 PubMed DOI
Galbraith A, Hopker J, Passfield L. Modeling intermittent running from a single-visit field test. Int J Sports Med. (2015) 36:365–70. 10.1055/s-0034-1394465 PubMed DOI
Galbraith A, Hopker J, Cardinale M, Cunniffe B, Passfield L. A 1-year study of endurance runners: training, laboratory tests, and field tests. Int J Sports Physiol Perform. (2014) 9:1019–25. 10.1123/ijspp.2013-0508 PubMed DOI
Kordi M, Menzies C, Galbraith A. Comparison of critical speed and D′ derived from 2 or 3 maximal tests. Int J Sports Physiol Perform. (2019) 14:685–8. 10.1123/ijspp.2017-0809 PubMed DOI
Olaya-Cuartero J, Pueo B, Villalon-Gasch L, Jiménez-Olmedo JM. Prediction of half-marathon power target using the 9/3-minute running critical power test. J Sports Sci Med. (2023):525–30. 10.52082/jssm.2023.525 PubMed DOI PMC
Pettitt RW, Jamnick N, Clark I. 3-min all-out exercise test for running. Int J Sports Med. (2012) 33:426–31. 10.1055/s-0031-1299749 PubMed DOI
Ribeiro HS, de Corrêa HL, Lima LKB, Costa Filha MB, Neto SLA, Barros ES, et al. Agreement and reproducibility of field and laboratory tests in the prediction of running speed in a 10-km race in amateur runners. Kinesiology. (2020) 52:299–307. 10.26582/k.52.2.16 DOI
Ruiz-Alias SA, Ñancupil-Andrade AA, Pérez-Castilla A, García-Pinillos F. Determining critical power and W′ in running: accuracy of different two-point models using the power metric. Proc Inst Mech Eng Part P J Sports Eng Technol. (2023) 0(0):17543371231200295. 10.1177/17543371231200295 DOI
Smyth B, Muniz-Pumares D. Calculation of critical speed from raw training data in recreational marathon runners. Med Sci Sports Exerc. (2020) 52:2637–45. 10.1249/MSS.0000000000002412 PubMed DOI PMC
Triska C, Karsten B, Beedie C, Koller-Zeisler B, Nimmerichter A, Tschan H. Different durations within the method of best practice affect the parameters of the speed–duration relationship. Eur J Sport Sci. (2018) 18:332–40. 10.1080/17461391.2017.1418025 PubMed DOI
Vassallo C, Kilduff LP, Cummins C, Murphy A, Gray A, Waldron M. A new energetics model for the assessment of the power-duration relationship during over-ground running. Eur J Sport Sci. (2022) 22:1211–21. 10.1080/17461391.2021.1931463 PubMed DOI
Hunter B, Ledger A, Muniz-Pumares D. Remote determination of critical speed and critical power in recreational runners. Int J Sports Physiol Perform. (2023) 18:1449–56. 10.1123/ijspp.2023-0276 PubMed DOI
Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, et al. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res. (2014) 28:592–600. 10.1519/JSC.0b013e31829b576d PubMed DOI
Patoz A, Pedrani N, Spicher R, Berchtold A, Borrani F, Malatesta D. Effect of mathematical modeling and fitting procedures on the assessment of critical speed and its relationship with aerobic fitness parameters. Front Physiol. (2021) 12:613066. 10.3389/fphys.2021.613066 PubMed DOI PMC
Bull AJ, Housh TJ, Johnson GO, Perry SR. Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc. (2000) 32:526. 10.1097/00005768-200002000-00040 PubMed DOI
Muniz-Pumares D, Karsten B, Triska C, Glaister M. Methodological approaches and related challenges associated with the determination of critical power and curvature constant. J Strength Cond Res. (2019) 33:584–96. 10.1519/JSC.0000000000002977 PubMed DOI
Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H. Work-exhaustion time relationships and the critical power concept. A critical review. J Sports Med Phys Fitness. (1997) 37:89–102. PubMed
Simpson LP, Kordi M. Comparison of critical power and W′ derived from 2 or 3 maximal tests. Int J Sports Physiol Perform. (2017) 12:825–30. 10.1123/ijspp.2016-0371 PubMed DOI
Caen K, Poole DC, Vanhatalo A, Jones AM. Critical power and maximal lactate steady state in cycling: “watts” the difference? Sports Med. (2024) 54:2497–513. 10.1007/s40279-024-02075-4 PubMed DOI
Gifford JR, Collins J. Critical speed throughout aging: insight into the world masters championships. Med Sci Sports Exerc. (2021) 53:524–33. 10.1249/MSS.0000000000002501 PubMed DOI
Triska C, Tschan H, Tazreiter G, Nimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. (2015) 36:1063–8. 10.1055/s-0035-1549958 PubMed DOI
Pettitt RW. Applying the critical speed concept to racing strategy and interval training prescription. Int J Sports Physiol Perform. (2016) 11:842–7. 10.1123/ijspp.2016-0001 PubMed DOI
Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. (2007) 39:548–55. 10.1249/mss.0b013e31802dd3e6 PubMed DOI
Figueiredo DH, Figueiredo DH, Manoel FA, Machado FA. Peak running velocity vs. critical speed: which one is better to prescribe endurance training to recreational runners? J Strength Cond Res. (2023) 37:1783–8. 10.1519/JSC.0000000000004452 PubMed DOI
Foster C, Hanley B, Barroso R, Boullosa D, Casado A, Haugen T, et al. Evolution of 1500-m olympic running performance. Int J Sports Physiol Perform. (2024) 19:62–70. 10.1123/ijspp.2023-0289 PubMed DOI
Clark IE, West BM, Reynolds SK, Murray SR, Pettitt RW. Applying the critical velocity model for an off-season interval training program. J Strength Cond Res. (2013) 27:3335–41. 10.1519/JSC.0b013e31828f9d87 PubMed DOI