Reducing the number of accepted species in Aspergillus series Nigri
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36760462
PubMed Central
PMC9903907
DOI
10.3114/sim.2022.102.03
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus luchuensis, Aspergillus niger, Aspergillus tubingensis, clinical fungi, indoor fungi, infraspecific variability, multigene phylogeny, multispecies coalescence model, ochratoxin A, species delimitation,
- Publikační typ
- časopisecké články MeSH
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenář F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.
BCCM IHEM collection Mycology and Aerobiology Sciensano Bruxelles Belgium
Biological Resource Center National Institute of Technology and Evaluation Kisarazu Japan
Department of Botany Faculty of Science Charles University Prague Czech Republic
Graduate School of Medical and Pharmaceutical Sciences Chiba University Chiba Japan
Medical Mycology Research Center Chiba University Chiba Japan
Molecular Chirality Research Center Chiba University Chiba Japan
Plant Molecular Science Center Chiba University Chiba Japan
Westerdijk Fungal Biodiversity Institute Utrecht the Netherlands
Zobrazit více v PubMed
Ahrens D, Fujisawa T, Krammer H-J, et al. (2016). Rarity and incomplete sampling in DNA-based species delimitation. Systematic Biology 65: 478–494. PubMed
Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, et al. (2009). Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrobial Agents and Chemotherapy 53: 4514–4517. PubMed PMC
Al-Musallam (1980). A revision of the black Aspergillus species. Ph.D. dissertation. Rijksuniversiteit; Utrecht, Netherlands.
Andersen MR, Salazar MP, Schaap PJ, et al. (2011). Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research 21: 885–897. PubMed PMC
Bairoch A, Apweiler R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28: 45–48. PubMed PMC
Ban S, Kasaishi R, Kamijo T, et al. (2021). An exploratory MALDI-TOF MS library based on SARAMIS superspectra for rapid identification of Aspergillus section Nigri. Mycoscience 62: 224–232. PubMed PMC
Bankevich A, Nurk S, Antipov D, et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455–477. PubMed PMC
Bennett JW, Klich MA. (1992). Aspergillus: biology and industrial applications. Butterworth-Heinemann, USA.
Boluda CG, Rico VJ, Divakar PK, et al. (2019). Evaluating methodologies for species delimitation: the mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. Implexae, Parmeliaceae). Persoonia 42: 75–100. PubMed PMC
Bouckaert R, Heled J, Kühnert D, et al. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10: e1003537. PubMed PMC
Buchfink B, Xie C, Huson DH. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods 12: 59–60. PubMed
Carstens BC, Pelletier TA, Reid NM, Satler JD. (2013). How to fail at species delimitation. Molecular Ecology 22: 4369–4383. PubMed
Cerqueira GC, Arnaud MB, Inglis DO, et al. (2014). The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Research 42: D705–710. PubMed PMC
Chambers EA, Hillis DM. (2020). The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology 69: 184–193. PubMed
Chen Y, Nie F, Xie S-Q, et al. (2021). Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications 12: 60. PubMed PMC
Crous PW, Verkley GJM, Groenewald JZ, et al. (eds) (2009). Fungal Biodiversity. CBS Laboratory Manual Series No. 1. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
de Vries RP, Riley R, Wiebenga A, et al. (2017). Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology 18: 28. PubMed PMC
Dettman JR, Jacobson DJ, Taylor JW. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57: 2703–2720. PubMed
Dettman JR, Jacobson DJ, Turner E, et al. (2003b). Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57: 2721–2741. PubMed
D’hooge E, Becker P, Stubbe D, et al. (2019). Black aspergilli: A remaining challenge in fungal taxonomy? Medical Mycology 57: 773–780. PubMed
Donaldson GC, Ball LA, Axelrood PE, et al. (1995). Primer sets developed to amplify conserved genes from filamentous ascomycetes are useful in differentiating Fusarium species associated with conifers. Applied and Environmental Microbiology 61: 1331–1340. PubMed PMC
Dyer PS, O’Gorman CM. (2011). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology 14: 649–654. PubMed
Ellena V, Seekles SJ, Vignolle GA, et al. (2021). Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1–2 locus of Aspergillus niger. BMC Genomics 22: 679. PubMed PMC
Emms DM, Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238. PubMed PMC
Feng X, Wang X, Chiang Y, et al. (2021). Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae). Taxon 70: 477–491.
Frisvad JC, Larsen TO, Thrane U, et al. (2011). Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS ONE 6: e23496. PubMed PMC
Frisvad JC, Møller LLH, Larsen TO, et al. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology 102: 9481–9515. PubMed PMC
Frisvad JC, Petersen LM, Lyhne EK, et al. (2014). Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri. PLoS ONE 9: e94857. PubMed PMC
Fungaro MHP, Ferranti LS, Massi FP, et al. (2017). Aspergillus labruscus sp. nov., a new species of Aspergillus section Nigri discovered in Brazil. Scientific Reports 7: 1–9. PubMed PMC
Gams W, Christensen M, Onions AH, et al. (1986). Infrageneric Taxa of Aspergillus. In: Advances in Penicillium and Aspergillus Systematics. Springer, US: 55–62.
Gautier M, Normand A-C, Ranque S. (2016). Previously unknown species of Aspergillus. Clinical Microbiology and Infection 22: 662–669. PubMed
Gits-Muselli M, Hamane S, Verillaud B, et al. (2021). Different repartition of the cryptic species of black aspergilli according to the anatomical sites in human infections, in a French University hospital. Medical Mycology 59: 985–992. PubMed
Glässnerová K, Sklenář F, Jurjević Ž, et al. (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1–51. PubMed PMC
Gnerre S, MacCallum I, Przybylski D, et al. (2011). High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences of the United States of America 108: 1513–1518. PubMed PMC
Grüning B, Dale R, Sjödin A, et al. (2018). Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods 15: 475–476. PubMed PMC
Hashimoto A, Hagiwara D, Watanabe A, et al. (2017). Drug sensitivity and resistance mechanism in Aspergillus section Nigri strains from Japan. Antimicrobial Agents and Chemotherapy 61: e02583-16. PubMed PMC
Heled J, Drummond AJ. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC
Hendrickx M, Beguin H, Detandt M. (2012). Genetic re-identification and antifungal susceptibility testing of Aspergillus section Nigri strains of the BCCM/IHEM collection. Mycoses 55: 148–155. PubMed
Hilário S, Gonçalves MFM, Alves A. (2021). Using genealogical concordance and coalescent-based species delimitation to assess species boundaries in the Diaporthe eres complex. Journal of Fungi 7: 507. PubMed PMC
Hong S-B, Cho HS, Shin HD, et al. (2006). Novel Neosartorya species isolated from soil in Korea. International Journal of Systematic and Evolutionary Microbiology 56: 477–486. PubMed
Hong S-B, Lee M, Kim DH, et al. (2013). Aspergillus luchuensis, an industrially important black Aspergillus in east Asia. PLoS ONE 8: e63769. PubMed PMC
Hong S-B, Yamada O, Samson RA. (2014). Taxonomic re-evaluation of black koji molds. Applied Microbiology and Biotechnology 98: 555–561. PubMed
Horn BW, Olarte RA, Peterson SW, et al. (2013). Sexual reproduction in Aspergillus tubingensis from section Nigri. Mycologia 105: 1153–1163. PubMed
Houbraken J, de Vries RP, Samson RA. (2014). Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology 86: 199–249. PubMed
Houbraken J, Kocsubé S, Visagie CM, et al. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95: 5–169. PubMed PMC
Howard SJ, Harrison E, Bowyer P, et al. (2011). Cryptic species and azole resistance in the Aspergillus niger complex. Antimicrobial Agents and Chemotherapy 55: 4802–4809. PubMed PMC
Hubka V, Barrs V, Dudová Z, et al. (2018). Unravelling species boundaries in the Aspergillus viridinutans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia 41: 142–174. PubMed PMC
Hubka V, Kolarik M. (2012). β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 29: 1–10. PubMed PMC
Hubka V, Kubatova A, Mallatova N, et al. (2012). Rare and new etiological agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterized by molecular sequencing. Medical Mycology 50: 601–610. PubMed
Huerta-Cepas J, Szklarczyk D, Forslund K, et al. (2016). eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research 44: D286–D293. PubMed PMC
Ismail MA. (2017). Incidence and significance of black aspergilli in agricultural commodities: a review, with a key to all species accepted to-date. European Journal of Biological Research 7: 207–222.
Jin JJ, Yu W bin, Yang JB, et al. (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: 241. PubMed PMC
Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed
Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed
Jones P, Binns D, Chang HY, et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236–1240. PubMed PMC
Jurjević Ž, Peterson SW, Stea G, et al. (2012). Two novel species of Aspergillus section Nigri from indoor air. IMA Fungus 3: 159–173. PubMed PMC
Jurjević Ž, Kubátová A, Kolařík M, Hubka V. (2015). Taxonomy of Aspergillus section Petersonii sect. nov. encompassing indoor and soil-borne species with predominant tropical distribution. Plant Systematics and Evolution 301: 2441–2462.
Katoh K, Rozewicki J, Yamada KD. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC
Khuna S, Suwannarach N, Kumla J, et al. (2021). Growth enhancement of Arabidopsis (Arabidopsis thaliana) and onion (Allium cepa) with inoculation of three newly identified mineral-solubilizing fungi in the genus Aspergillus section Nigri. Frontiers in Microbiology 12: 705896. PubMed PMC
Kocsubé S, Perrone G, Magistà D, et al. (2016). Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Studies in Mycology 85: 91–105. PubMed PMC
Korf I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5: 59. PubMed PMC
Kozakiewicz Z. (1989). Aspergillus species on stored products. Mycological Papers 161: 1–188.
Kozakiewicz Z, Frisvad JC, Hawksworth DL, Pitt JI, Samson RA, Stolk AC. (1992). Proposal for nomina specifica conservanda and rejicienda in Aspergillus and Penicillium (Fungi). Taxon 41: 109–113.
Krueger F. (2015). Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Babraham Institute https://www.bioinformatics.babraham.ac.uk/projects.
Kubatko LS, Degnan JH. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology 56: 17–24. PubMed
Kück P, Mayer C, Wägele J-W, et al. (2012). Long branch effects distort maximum likelihood phylogenies in simulations despite selection of the correct model. PLoS ONE 7: e36593. PubMed PMC
Kundu R, Casey J, Sung WK. (2019). HyPo: super fast & accurate polisher for long read genome assemblies. bioRxiv doi: 10.1101/2019.12.19.882506. DOI
Kusters-van Someren MA, Samson RA, Visser J. (1991). The use of RFLP analysis in classification of the black Aspergilli: reinterpretation of the Aspergillus niger aggregate. Current Genetics 19: 21–26.
Lanfear R, Frandsen PB, Wright AM, et al. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. PubMed
Letunic I, Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. PubMed PMC
Li H, Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, et al. (2009). 1000 genome project data processing subgroup. The sequence alignment/map format and Samtools. Bioinformatics 25: 2078–2079. PubMed PMC
Li Y, Wen J, Ren Y, et al. (2019). From seven to three: integrative species delimitation supports major reduction in species number in Rhodiola section Trifida (Crassulaceae) on the Qinghai-Tibetan Plateau. Taxon 68: 268–279.
Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed
Mageswari A, Kim J, Cheon K-H, et al. (2016). Analysis of the MAT1-1 and MAT1-2 gene ratio in black Koji molds isolated from Meju. Mycobiology 44: 269–276. PubMed PMC
Majoros WH, Pertea M, Salzberg SL. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20: 2878–2879. PubMed
Matute DR, Sepúlveda VE. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131: 103249. PubMed PMC
Mitchell AL, Attwood TK, Babbitt PC, et al. (2019). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research 47: D351–D360. PubMed PMC
Mosseray R. (1934). Les Aspergillus de la section” Niger” Thom & Church. La Cellule 43: 203–285.
Nargesi S, Jafarzadeh J, Najafzadeh MJ, et al. (2022). Molecular identification and antifungal susceptibility of clinically relevant and cryptic species of Aspergillus sections Flavi and Nigri. Journal of Medical Microbiology 71: 001480. PubMed
Negri CE, Gonçalves SS, Xafranski H, et al. (2014). Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles. Journal of Clinical Microbiology 52: 3633–3640. PubMed PMC
Nguyen L-T, Schmidt HA, von Haeseler A, et al. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. PubMed PMC
Nielsen KF, Mogensen JM, Johansen M, et al. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry 395: 1225–1242. PubMed
Noonim P, Mahakarnchanakul W, Nielsen KF, et al. (2008). Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. International Journal of Food Microbiology 128: 197–202. PubMed
Pante E, Puillandre N, Viricel A, et al. (2015). Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology 24: 525–544. PubMed
Paradis E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26: 419–420. PubMed
Parker E, Dornburg A, Struthers CD, et al. (2021). Phylogenomic species delimitation dramatically reduces species diversity in an Antarctic adaptive radiation. Systematic Biology 71: 58–77. PubMed
Perrone G, Stea G, Epifani F, et al. (2011). Aspergillus niger contains the cryptic phylogenetic species A. awamori. Fungal Biology 115: 1138–1150. PubMed
Peterson SW. (2000). Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. In: Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification (Samson RA, Pitt JI, eds). Harwood Academic Publishers, UK: 323–355.
Peterson SW. (2008). Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100: 205–226. PubMed
Pitt JI, Hocking AD. (2009). Aspergillus and related teleomorphs. In: Fungi and Food Spoilage. Springer, USA: 275–337.
R Core Team (2016). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
Raper KB, Fennell DI. (1965). The genus Aspergillus. Williams & Wilkins, USA.
Rawlings ND, Barrett AJ, Thomas PD, et al. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research 46: D624–D632. PubMed PMC
Richards TA. (2011). Genome evolution: horizontal movements in the fungi. Current Biology 21: R166–R168. PubMed
Rokas A, Williams BL, King N, et al. (2003). Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 798–804. PubMed
Ronquist F, Teslenko M, van der Mark P, et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. PubMed PMC
Salah H, Lackner M, Houbraken J, et al. (2019). The emergence of rare clinical Aspergillus species in Qatar: molecular characterization and antifungal susceptibility profiles. Frontiers in Microbiology 10: 1677. PubMed PMC
Samson RA, Houbraken J, Thrane U, et al. (2010). Food and indoor fungi. CBS Laboratory Manual Series 2. CBS-KNAW Fungal Biodiversity Centre, The Netherlands.
Samson RA, Houbraken J, Thrane U, et al. (2019). Food and Indoor Fungi. Westerdijk Fungal Biodiversity Institute, The Netherlands.
Samson RA, Houbraken JAMP, Kuijpers AFA, et al. (2004). New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Studies in Mycology 50: 45–61.
Samson RA, Hubka V, Varga J, et al. (2017). Response to Pitt & Taylor 2016: conservation of Aspergillus with A. niger as the conserved type is unnecessary and potentially disruptive. Taxon 66: 1439–1446.
Samson RA, Noonim P, Meijer M, et al. (2007). Diagnostic tools to identify black aspergilli. Studies in Mycology 59: 129–145. PubMed PMC
Schuster E, Dunn-Coleman N, Frisvad J, et al. (2002). On the safety of Aspergillus niger - a review. Applied Microbiology and Biotechnology 59: 426–435. PubMed
Seekles SJ, Punt M, Savelkoel N, et al. (2022). Genome sequences of 24 Aspergillus niger sensu stricto strains to study strain diversity, heterokaryon compatibility, and sexual reproduction. G3 (Bethesda) 12: jkac124. PubMed PMC
Seo T-K. (2008). Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Molecular Biology and Evolution 25: 960–971. PubMed
Seppey M, Manni M, Zdobnov EM. (2019). BUSCO: assessing genome assembly and annotation completeness. Methods in Molecular Biology 1962: 227–245. PubMed
Shen W, Le S, Li Y, et al. (2016). SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11: e0163962. PubMed PMC
Silva da JJ, Iamanaka BT, Ferranti LS, et al. (2020). Diversity within Aspergillus niger clade and description of a new species: Aspergillus vinaceus sp. nov. Journal of Fungi 6: 371. PubMed PMC
Sklenář F, Glässnerová K, Jurjević Ž, et al. (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102: 53–93. PubMed PMC
Sklenář F, Jurjević Ž, Houbraken J, et al. (2021). Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Studies in Mycology 99: 100120. PubMed PMC
Sklenář F, Jurjević Ž, Zalar P, et al. (2017). Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Studies in Mycology 88: 161–236 PubMed PMC
Slot JC, Rokas A. (2011). Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Current Biology 21: 134–139. PubMed
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC
Stanke M, Schöffmann O, Morgenstern B, et al. (2006). Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7: 62. PubMed PMC
Steenkamp ET, Wingfield MJ, McTaggart AR, et al. (2018). Fungal species and their boundaries matter – definitions, mechanisms and practical implications. Fungal Biology Reviews 32: 104–116.
Steenwyk JL, Shen X-X, Lind AL, et al. (2019). A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 10: e00925-19. PubMed PMC
Steenwyk JL, Balamurugan C, Raja HA. et al. (2022). Phylogenomics reveals extensive misidentification of fungal strains from the genus Aspergillus. bioRxiv doi: 10.1101/2022.11.22.517304. PubMed DOI PMC
Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: e1008924. PubMed PMC
Swofford DL. (2003). PAUP* Phylogenetic analysis using parsimony, (*and other methods); version 4.0 b10. Sinauer Associates, USA.
Szigeti G, Sedaghati E, Mahmoudabadi AZ, et al. (2012). Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses 55: 333–338. PubMed
Szöllősi GJ, Davín AA, Tannier E, et al. (2015). Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philosophical Transactions of the Royal Society B: Biological Sciences 370: 20140335. PubMed PMC
Talavera G, Castresana J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. PubMed
Taniwaki MH, Pitt JI, Magan N. (2018). Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Current Opinion in Food Science 23: 38–43.
Taylor JW, Jacobson DJ, Kroken S, et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32. PubMed
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, et al. (2008). Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Research 18: 1979–1990. PubMed PMC
Thom C. (1916). Aspergillus niger group. Journal of Agricultural Research 8: 1–15.
Thom C, Church MB. (1926). The Aspergilli. Baltimore: Williams & Wilkins.
Thom C, Raper KB. (1945). A Manual of the Aspergilli. Baltimore: Williams & Wilkins.
Turland NJ, Wiersema JH, Barrie FR, et al. (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books.
van Rossum G, Drake FL., Jr (2014). The python language reference. Python software foundation.
Varga J, Szigeti G, Baranyi N, et al. (2014). Aspergillus: sex and recombination. Mycopathologia 178: 349–362. PubMed
Varga J, Frisvad JC, Kocsubé S, et al. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology 69: 1–17. PubMed PMC
Varga J, Kevei F, Vriesema A, et al. (1994). Mitochondrial DNA restriction fragment length polymorphisms in field isolates of the Aspergillus niger aggregate. Canadian Journal of Microbiology 40: 612–621. PubMed
Vaser R, Sović I, Nagarajan N, et al. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research 27: 737–746. PubMed PMC
Vesth TC, Nybo JL, Theobald S, et al. (2018). Investigation of inter- and infraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics 50: 1688–1695. PubMed
Vidal-Acuña MR, Ruiz M, Torres MJ, et al. (2019). Prevalence and in vitro antifungal susceptibility of cryptic species of the genus Aspergillus isolated in clinical samples. Enfermedades Infecciosas y Microbiologia Clinica (English ed.) 37: 296–300. PubMed
Wang PM, Liu X bin, Dai YC, et al. (2018). Phylogeny and species delimitation of Flammulina: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycological Progress 17: 1013–1030.
Ward OP. (1989). Fermentation Biotechnology. Prentice Hall, Englewood Cliffs, New York, USA.
Wehmer C. (1907). Zur Kenntnis einiger Aspergillus-Arten. Centralblatt für Bakteriologie und Parasitenkunde, Abt. II 18: 385–395.
Wilhelm KA. (1877). Beiträge zur Kenntnis des Pilzgattung Aspergillus. Doctoral Dissertation, Strasburg, Germany.
Woudenberg JHC, Seidl MF, Groenewald JZ, et al. (2015). Alternaria section Alternaria: species, formae speciales or pathotypes? Studies in Mycology 82: 1–21. PubMed PMC
Yamada O, Takara R, Hamada R, et al. (2011). Molecular biological researches of Kuro-Koji molds, their classification and safety. Journal of Bioscience and Bioengineering 112: 233–237. PubMed
Yang L, Lübeck M, Lübeck PS. (2017). Aspergillus as a versatile cell factory for organic acid production. Fungal Biology Reviews 31: 33–49.
Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.
Yang Z, Rannala B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107: 9264–9269. PubMed PMC
Yang Z, Rannala B. (2014). Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31: 3125–3135. PubMed PMC
Yin Y, Mao X, Yang J, et al. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research 40: W445–451. PubMed PMC
Yu T-S, Yeo S-H, Kim H-S. (2004). A new species of hyphomycetes, Aspergillus coreanus sp. nov., isolated from traditional Korean nuruk. Journal of Microbiology and Biotechnology 14: 182–187.
Zerbino DR, Birney E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821–829. PubMed PMC
A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species
Dryad
10.5061/dryad.866t1g1td