Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/R009066/1
Medical Research Council - United Kingdom
PubMed
36633503
PubMed Central
PMC10909431
DOI
10.1002/psc.3478
Knihovny.cz E-zdroje
- Klíčová slova
- antagonism, dicarba, disulfide mimetics, insulin mimetic peptide, insulin receptor, staple, triazole,
- MeSH
- disulfidy chemie MeSH
- inzulin * metabolismus MeSH
- peptidy chemie MeSH
- receptor inzulinu * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- disulfidy MeSH
- inzulin * MeSH
- peptidy MeSH
- receptor inzulinu * MeSH
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.
Zobrazit více v PubMed
Lawrence MC. Understanding insulin and its receptor from their three‐dimensional structures. Mol Metab. 2021;52:101255. doi:10.1016/j.molmet.2021.101255 PubMed DOI PMC
De Meyts P. The structural basis of insulin and insulin‐like growth factor‐I receptor binding and negative co‐operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia. 1994;37(Suppl 2):S135‐S148. doi:10.1007/BF00400837 PubMed DOI
Gutmann T, Schäfer IB, Poojari C, et al. Cryo‐EM structure of the complete and ligand‐saturated insulin receptor ectodomain. J Cell Biol. 2020;219(1):1‐16. doi:10.1083/jcb.201907210 PubMed DOI PMC
Uchikawa E, Choi E, Shang GJ, Yu HT, Bai XC. Activation mechanism of the insulin receptor revealed by cryo‐EM structure of the fully liganded receptor‐ligand complex. Elife. 2019;8:e48630. doi:10.7554/eLife.48630 PubMed DOI PMC
Li J, Park J, Mayer JP, et al. Synergistic activation of the insulin receptor via two distinct sites. Nat Struct Mol Biol. 2022;29(4):357‐368. doi:10.1038/s41594-022-00750-6 PubMed DOI PMC
Nielsen J, Brandt J, Boesen T, et al. Structural investigations of full‐length insulin receptor dynamics and signalling. J Mol Biol. 2022;434(5):167458. doi:10.1016/j.jmb.2022.167458 PubMed DOI
Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 2007;88(5):687‐713. doi:10.1002/bip.20734 PubMed DOI
In Nature Milestones: Diabetes. 2021. https://www.nature.com/collections/diabetes-milestones
Bolli GB, Cheng AYY, Owens DR. Insulin: evolution of insulin formulations and their application in clinical practice over 100 years. Acta Diabetol. 2022;59(9):1129‐1144. doi:10.1007/s00592-022-01938-4 PubMed DOI PMC
Perkins BA, Sherr JL, Mathieu C. Type 1 diabetes glycemic management: insulin therapy, glucose monitoring, and automation. Science. 2021;373(6554):522‐527. doi:10.1126/science.abg4502 PubMed DOI
Hua QX, Weiss MA. Mechanism of insulin fibrillation—the structure of insulin under amyloidogenic conditions resembles a protein‐folding intermediate. J Biol Chem. 2004;279(20):21449‐21460. doi:10.1074/jbc.M314141200 PubMed DOI
Pillutla RC, Hsiao KC, Beasley JR, et al. Peptides identify the critical hotspots involved in the biological activation of the insulin receptor. J Biol Chem. 2002;277(25):22590‐22594. doi:10.1074/jbc.M202119200 PubMed DOI
Schaffer L, Brissette RE, Spetzler JC, et al. Assembly of high‐affinity insulin receptor agonists and antagonists from peptide building blocks. Proc Natl Acad Sci U S A. 2003;100(8):4435‐4439. doi:10.1073/pnas.0830026100 PubMed DOI PMC
Jensen M, Hansen B, De Meyts P, Schaffer L, Urso B. Activation of the insulin receptor by insulin and a synthetic peptide leads to divergent metabolic and mitogenic signaling and responses. J Biol Chem. 2007;282(48):35179‐35186. doi:10.1074/jbc.M704599200 PubMed DOI
Kumar L, Vizgaudis W, Klein‐Seetharaman J. Structure‐based survey of ligand binding in the human insulin receptor. Br J Pharmacol. 2022;179:3512‐3528. PubMed
Pissarnitski DA, Kekec A, Yan L, et al. Discovery of insulin receptor partial agonists MK‐5160 and MK‐1092 as novel basal insulins with potential to improve therapeutic index. J Med Chem. 2022;65:5593‐5605. PubMed
Wu M, Carballo‐Jane E, Zhou H, et al. Functionally selective signaling and broad metabolic benefits by novel insulin receptor partial agonists. Nat Commun. 2022;13(1):942. doi:10.1038/s41467-022-28561-9 PubMed DOI PMC
Gallagher EJ, LeRoith D. Hyperinsulinaemia in cancer. Nat Rev Cancer. 2020;20(11):629‐644. doi:10.1038/s41568-020-0295-5 PubMed DOI
Pillutla RBR, Blume AJ, Schaffer L, et al. Patent to Novo Nordisk A/S, Antyra Inc., US 2009/019072 A1.
Pillutla RBR, Blume AJ, Schaffer L, et al. Patent to Novo Nordisk A/S, Antyra Inc., US 2011/0124556 A1.
Schaffer L, Brand CL, Hansen BF, et al. A novel high‐affinity peptide antagonist to the insulin receptor. Biochem Biophys Res Commun. 2008;376(2):380‐383. doi:10.1016/j.bbrc.2008.08.151 PubMed DOI
Brandt SJ, Mayer JP, Ford J, Gelfanov VM, DiMarchi RD. Controlled intramolecular antagonism as a regulator of insulin receptor maximal activity. Peptides. 2018;100:18‐23. doi:10.1016/j.peptides.2017.11.022 PubMed DOI
Kirk NS, Chen Q, Wu YG, et al. Activation of the human insulin receptor by non‐insulin‐related peptides. Nat Commun. 2022;13(1):5695. doi:10.1038/s41467-022-33315-8 PubMed DOI PMC
Park J, Li J, Mayer JP, et al. Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun. 2022;13(1):5594. doi:10.1038/s41467-022-33274-0 PubMed DOI PMC
Morcavallo A, Genua M, Palummo A, et al. Insulin and insulin‐like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J Biol Chem. 2012;287(14):11422‐11436. doi:10.1074/jbc.M111.252478 PubMed DOI PMC
Panikova T, Mitrova K, Halamova T, et al. Insulin analogues with altered insulin receptor isoform binding specificities and enhanced aggregation stabilities. J Med Chem. 2021;64(19):14848‐14859. doi:10.1021/acs.jmedchem.1c01388 PubMed DOI
Asai S, Zakova L, Selicharova I, Marek A, Jiracek J. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem. 2021;413(17):4531‐4543. doi:10.1007/s00216-021-03423-3 PubMed DOI
Machackova K, Collinsova M, Chrudinova M, et al. Insulin‐like growth factor 1 analogs clicked in the C domain: chemical synthesis and biological activities. J Med Chem. 2017;60(24):10105‐10117. doi:10.1021/acs.jmedchem.7b01331 PubMed DOI
Krizkova K, Chrudinova M, Povalova A, et al. Insulin‐insulin‐like growth factors hybrids as molecular probes of hormone:receptor binding specificity. Biochemistry. 2016;55(21):2903‐2913. doi:10.1021/acs.biochem.6b00140 PubMed DOI
Brandsma L, Arens JF, Wijers HE. Chemistry of acetylenic ethers, 67—allenyl thioethers from alkynyl thioethers. Recl Trav Chim Pays‐Bas. 1963;82:1040‐1046.
Carson JF, Boggs L. Preparation of S‐(1‐propynyl)‐cysteine. J Org Chem. 1965;30(3):895‐896. doi:10.1021/jo01014a057 DOI
Krayushkin MM, Kalik MA, Zvezdina EY. 5‐Methyl‐2‐propargylthio‐3‐thiophenecarbaldehyde oxime in the synthesis of new S,N‐containing fused heterocycles. Russ Chem Bull. 1993;42(3):488‐490. doi:10.1007/BF00698438 DOI
Lubos M, Mrazkova L, Gwozdiakova P, et al. Functional stapled fragments of human preptin of minimised length. Org Biomol Chem. 2022;20(12):2446‐2454. doi:10.1039/D1OB02193A PubMed DOI
Picha J, Budesinsky M, Machackova K, Collinsova M, Jiracek J. Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides. J Pept Sci. 2017;23(3):202‐214. doi:10.1002/psc.2968 PubMed DOI PMC
Wishart DSS, Sykes BD. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363‐392. doi:10.1016/S0076-6879(94)39014-2 PubMed DOI
Fabre B, Picha J, Selicharova I, et al. Probing tripodal peptide scaffolds as insulin and IGF‐1 receptor ligands. Eur J Org Chem. 2018;2018(37):5193‐5201. doi:10.1002/ejoc.201800606 DOI
Lawrence CF, Margetts MB, Menting JG, et al. Insulin mimetic peptide disrupts the primary binding site of the insulin receptor. J Biol Chem. 2016;291(30):15473‐15481. doi:10.1074/jbc.M116.732180 PubMed DOI PMC
Xiong X, Blakely A, Kim JH, et al. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nat Chem Biol. 2022;18(5):511‐519. doi:10.1038/s41589-022-00981-0 PubMed DOI PMC
Scapin G, Dandey VP, Zhang Z, et al. Structure of the insulin receptor‐insulin complex by single‐particle cryo‐EM analysis. Nature. 2018;556(7699):122‐125. doi:10.1038/nature26153 PubMed DOI PMC