Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides

. 2017 Mar ; 23 (3) : 202-214. [epub] 20170125

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28120383

Grantová podpora
MR/K000179/1 Medical Research Council - United Kingdom

The rise of CuI-catalyzed click chemistry has initiated an increased demand for azido and alkyne derivatives of amino acid as precursors for the synthesis of clicked peptides. However, the use of azido and alkyne amino acids in peptide chemistry is complicated by their high cost. For this reason, we investigated the possibility of the in-house preparation of a set of five Fmoc azido amino acids: β-azido l-alanine and d-alanine, γ-azido l-homoalanine, δ-azido l-ornithine and ω-azido l-lysine. We investigated several reaction pathways described in the literature, suggested several improvements and proposed several alternative routes for the synthesis of these compounds in high purity. Here, we demonstrate that multigram quantities of these Fmoc azido amino acids can be prepared within a week or two and at user-friendly costs. We also incorporated these azido amino acids into several model tripeptides, and we observed the formation of a new elimination product of the azido moiety upon conditions of prolonged couplings with 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/DIPEA. We hope that our detailed synthetic protocols will inspire some peptide chemists to prepare these Fmoc azido acids in their laboratories and will assist them in avoiding the too extensive costs of azidopeptide syntheses. Experimental procedures and/or analytical data for compounds 3-5, 20, 25, 26, 30 and 43-47 are provided in the supporting information. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

Zobrazit více v PubMed

Tornoe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: 1,2,3‐triazoles by regiospecific copper(I)‐catalyzed 1,3‐dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002; 67: 3057–3064. PubMed

Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: copper(I)‐catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem.‐Int. Edit. 2002; 41: 2596–2599. PubMed

Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. Copper(I)‐catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc. 2005; 127: 210–216. PubMed

Bock VD, Hiemstra H, van Maarseveen JH. Cu‐I‐catalyzed alkyne‐azide ‘click’ cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006; 51–68.

Ingale S, Dawson PE. On resin side‐chain cyclization of complex peptides using CuAAC. Org. Lett. 2011; 13: 2822–2825. PubMed

Jagasia R, Holub JM, Bollinger M, Kirshenbaum K, Finn MG. Peptide cyclization and cyclodimerization by Cu‐I‐mediated azide‐alkyne cycloaddition. J. Org. Chem. 2009; 74: 2964–2974. PubMed PMC

Pedersen DS, Abell A. 1,2,3‐Triazoles in peptidomimetic chemistry. Eur. J. Org. Chem. 2011; 2399–2411.

Angell YL, Burgess K. Peptidomimetics via copper‐catalyzed azide‐alkyne cycloadditions. Chem. Soc. Rev. 2007; 36: 1674–1689. PubMed

Park JH, Waters ML. Positional effects of click cyclization on beta‐hairpin structure, stability, and function. Org. Biomol. Chem. 2013; 11: 69–77. PubMed PMC

Kawamoto SA, Coleska A, Ran X, Yi H, Yang CY, Wang SM. Design of triazole‐stapled BCL9 alpha‐helical peptides to target the beta‐catenin/B‐cell CLL/lymphoma 9 (BCL9) protein–protein interaction. J. Med. Chem. 2012; 55: 1137–1146. PubMed PMC

Scrima M, Le Chevalier‐Isaad A, Rovero P, Papini AM, Chorev M, D'Ursi AM. Cu‐I‐catalyzed azide‐alkyne intramolecular i‐to‐(i + 4) side‐chain‐to‐side‐chain cyclization promotes the formation of helix‐like secondary structures. Eur. J. Org. Chem. 2010; 446–457.

Holland‐Nell K, Meldal M. Maintaining biological activity by using triazoles as disulfide bond mimetics. Angew. Chem.‐Int. Edit. 2011; 50: 5204–5206. PubMed

Meldal M, Tornoe CW. Cu‐catalyzed azide‐alkyne cycloaddition. Chem. Rev. 2008; 108: 2952–3015. PubMed

Holub JM, Kirshenbaum K. Tricks with clicks: modification of peptidomimetic oligomers via copper‐catalyzed azide‐alkyne [3 + 2] cycloaddition. Chem. Soc. Rev. 2010; 39: 1325–1337. PubMed

Castro V, Rodriguez H, Abericio F. CuAAC: an efficient click chemistry reaction on solid phase. ACS Comb. Sci. 2016; 18: 1–14. PubMed

Nilsson BL, Kiessling LL, Raines RT. Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2000; 2: 1939–1941. PubMed

Vikova J, Collinsova M, Kletvikova E, Budesinsky M, Kaplan V, Zakova L, Veverka V, Hexnerova R, Avino RJT, Strakova J, Selicharova I, Vanek V, Wright DW, Watson CJ, Turkenburg JP, Brzozowski AM, Jiracek J. Rational steering of insulin binding specificity by intra‐chain chemical crosslinking. Sci. Rep. 2016; 6: 12. PubMed PMC

Wei L, Lubell WD. Scope and limitations in the use of N‐(PhF)serine‐derived cyclic sulfamidates for amino acid synthesis. Can. J. Chem. 2001; 79: 94–104.

Sai Sudhir V, Phani Kumar NY, Nasir Baig RB, Chandrasekaran S. Facile entry into triazole fused heterocycles via sulfamidate derived azido‐alkynes. J. Org. Chem 2009; 74: 7588–7591. PubMed

Sudhir VS, Kumar NYP, Chandrasekaran S. Click chemistry inspired synthesis of ferrocene amino acids and other derivatives. Tetrahedron 2010; 66: 1327–1334.

Arnold LD, May RG, Vederas JC. Synthesis of optically pure alpha‐amino‐acids via salts of alpha‐amino‐beta‐propiolactone. J. Am. Chem. Soc. 1988; 110: 2237–2241.

Fujii M, Hidaka J. Nucleic acid analog peptide containing beta‐aminoalanine modified with nucleobases. Nucleos. Nucleot. 1999; 18: 1421–1422.

Sun DQ, Jones V, Carson EI, Lee REB, Scherman MS, McNeil MR, Lee RE. Solid‐phase synthesis and biological evaluation of a uridinyl branched peptide urea library. Bioorg. Med. Chem. Lett. 2007; 17: 6899–6904. PubMed PMC

Fujii M, Yoshida K, Hidaka J, Ohtsu T. Nucleic acid analog peptide (NAAP) .2. Syntheses and properties of novel DNA analog peptides containing nucleobase linked beta‐aminoalanine. Bioorg. Med. Chem. Lett. 1997; 7: 637–640.

Fujii M, Yoshida K, Hidaka J, Ohtsu T. Hybridization properties of nucleic acid analogs containing beta‐aminoalanine modified with nucleobases. Chem. Commun. 1998; 717–718.

Rosenberg SH, Spina KP, Woods KW, Polakowski J, Martin DL, Yao ZL, Stein HH, Cohen J, Barlow JL, Egan DA, Tricarico KA, Baker WR, Kleinert HD. Studies directed toward the design of orally active renin inhibitors. 1. Some factors influencing the absorption of small peptides. J. Med. Chem. 1993; 36: 449–459. PubMed

Kogan TP, Rawson TE. The synthesis of chiral 3‐oxo‐6‐(phenylmethoxy)‐carbonyl‐2‐piperazineacetic acid‐esters designed for the presentation of an aspartic‐acid side‐chain – a subsequent novel Friedel crafts reaction. Tetrahedron Lett. 1992; 33: 7089–7092.

Pickersgill IF, Rapoport H. Preparation of functionalized, conformationally constrained DTPA analogues from l‐ or d‐serine and trans‐4‐hydroxy‐l‐proline. Hydroxymethyl substituents on the central acetic acid and on the backbone. J. Org. Chem. 2000; 65: 4048–4057. PubMed

Gajewski M, Seaver B, Esslinger CS. Design, synthesis, and biological activity of novel triazole amino acids used to probe binding interactions between ligand and neutral amino acid transport protein SN1. Bioorg. Med. Chem. Lett. 2007; 17: 4163–4166. PubMed PMC

Colombo R, Mingozzi M, Belvisi L, Arosio D, Piarulli U, Carenini N, Perego P, Zaffaroni N, De Cesare M, Castiglioni V, Scanziani E, Gennari C. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine–glycine–aspartate (RGD) peptidomimetic‐paclitaxel conjugates targeting integrin alpha(v)beta(3). J. Med. Chem. 2012; 55: 10460–10474. PubMed

Otsuka M, Kittaka A, Iimori T, Yamashita H, Kobayashi S, Ohno M. Synthetic studies on an antitumor antibiotic, bleomycin. 12. Preparation of an l‐2,3‐diaminopropionic acid‐synthetic intermediate. Chem. Pharm. Bull. 1985; 33: 509–514. PubMed

Stanley NJ, Pedersen DS, Nielsen B, Kvist T, Mathiesen JM, Brauner‐Osborne H, Taylor DK, Abell AD. 1,2,3‐Triazolyl amino acids as AMPA receptor ligands. Bioorg. Med. Chem. Lett. 2010; 20: 7512–7515. PubMed

Boger DL, Honda T, Menezes RF, Colletti SL, Dang Q, Yang WJ. Total syntheses of (+)‐P‐3A, epi‐(−)‐P‐3A, and (−)‐desacetamido P‐3A. J. Am. Chem. Soc. 1994; 116: 82–92.

Mukai S, Flematti GR, Byrne LT, Besant PG, Attwood PV, Piggott MJ. Stable triazolylphosphonate analogues of phosphohistidine. Amino Acids 2012; 43: 857–874. PubMed

Panda G, Rao NV. A short synthetic approach to chiral serine azido derivatives. Synlett 2004; 714–716. DOI: 10.1055/s-2004-817770. DOI

Jeong JM, Shetty D, Lee DS, Chung JK, Lee MC, Jeong J, Dineswi S, Lee D, US2012029177‐A1, 2011.

Friscourt F, Fahrni CJ, Boons GJ. A fluorogenic probe for the catalyst‐free detection of azide‐tagged molecules. J. Am. Chem. Soc. 2012; 134: 18809–18815. PubMed PMC

Zhong M, Hanan EJ, Shen W, Bui M, Arkin MR, Barr KJ, Evanchik MJ, Hoch U, Hyde J, Martell JR, Oslob JD, Paulvannan K, Prabhu S, Silverman JA, Wright J, Yu CH, Zhu JA, Flanagan WM. Structure–activity relationship (SAR) of the alpha‐amino acid residue of potent tetrahydroisoquinoline (THIQ)‐derived LFA‐1/ICAM‐1 antagonists. Bioorg. Med. Chem. Lett. 2011; 21: 307–310. PubMed

Zou Y, Fahmi NE, Vialas C, Miller GM, Hecht SM. Total synthesis of deamido bleomycin A(2), the major catabolite of the antitumor agent bleomycin. J. Am. Chem. Soc. 2002; 124: 9476–9488. PubMed

Zhang XJ, Krishnamurthy R. Mapping the landscape of potentially primordial informational oligomers: oligo‐dipeptides tagged with orotic acid derivatives as recognition elements. Angew. Chem.‐Int. Edit. 2009; 48: 8124–8128. PubMed

Lau YH, Spring DR. Efficient synthesis of Fmoc‐protected azido amino acids. Synlett 2011; 1917–1919. DOI: 10.1055/s-0030-1260950. DOI

Akaji K, Aimoto S. Synthesis of MEN11420, a glycosylated bicyclic peptide, by intramolecular double cyclization using a chloroimidazolinium coupling reagent. Tetrahedron 2001; 57: 1749–1755.

Hirschmann R, Yao WQ, Arison B, Maechler L, Rosegay A, Sprengeler PA, Smith AB. Synthesis of the first tricyclic homodetic peptide. Use of coordinated orthogonal deprotection to achieve directed ring closure. Tetrahedron 1998; 54: 7179–7202.

Barghash RF, Massi A, Dondoni A. Synthesis of thiourea‐tethered C‐glycosyl amino acids via isothiocyanate‐amine coupling. Org. Biomol. Chem. 2009; 7: 3319–3330. PubMed

Zhang LH, Kauffman GS, Pesti JA, Yin JG. Rearrangement of N‐alpha‐protected l‐asparagines with iodosobenzene diacetate. A practical route to beta‐amino‐l‐alanine derivatives. J. Org. Chem. 1997; 62: 6918–6920.

Millward SW, Henning RK, Kwong GA, Pitram S, Agnew HD, Deyle KM, Nag A, Hein J, Lee SS, Lim J, Pfeilsticker JA, Sharpless KB, Heath JR. Iterative in situ click chemistry assembles a branched capture agent and allosteric inhibitor for Akt1. J. Am. Chem. Soc. 2011; 133: 18280–18288. PubMed PMC

Ghosh PS, Hamilton AD. Noncovalent template‐assisted mimicry of multiloop protein surfaces: assembling discontinuous and functional domains. J. Am. Chem. Soc. 2012; 134: 13208–13211. PubMed

Pehere AD, Abell AD. New beta‐strand templates constrained by Huisgen cycloaddition. Org. Lett. 2012; 14: 1330–1333. PubMed

Oh KI, Lee JH, Joo C, Han H, Cho M. Beta‐azidoalanine as an IR probe: application to amyloid A beta(16–22) aggregation. J. Phys. Chem. B 2008; 112: 10352–10357. PubMed

Miller N, Williams GM, Brimble MA. Synthesis of fish antifreeze neoglycopeptides using microwave‐assisted ‘click chemistry’. Org. Lett. 2009; 11: 2409–2412. PubMed

Roice M, Johannsen I, Meldal M. High capacity poly(ethylene glycol) based amino polymers for peptide and organic synthesis. QSAR Comb. Sci. 2004; 23: 662–673.

Thurieau C, Janiak P, Krantic S, Guyard C, Pillon A, Kucharczyk N, Vilaine JP, Fauchere JL. A new somatostatin analog with optimized ring size inhibits neointima formation induced by balloon injury in rats without altering growth‐hormone release. Eur. J. Med. Chem. 1995; 30: 115–122.

Sakura N, Itoh T, Uchida Y, Ohki K, Okimura K, Chiba K, Sato Y, Sawanishi H. The contribution of the N‐terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity. B. Chem. Soc. Jpn. 2004; 77: 1915–1924.

Papeo G, Giordano P, Brasca MG, Buzzo F, Caronni D, Ciprandi F, Mongelli N, Veronesi M, Vulpetti A, Dalvit C. Polyfluorinated amino acids for sensitive F‐19 NMR‐based screening and kinetic measurements. J. Am. Chem. Soc. 2007; 129: 5665–5672. PubMed

Roth S, Thomas NR. A concise route to l‐azidoamino acids: l‐azidoalanine, l‐azidohomoalanine and l‐azidonorvaline. Synlett 2010; 607–609. DOI: 10.1038/nprot.2010.164. DOI

Masiukiewicz E, Wiejak S, Rzeszotarska B. Scalable syntheses of N‐alpha‐benzyloxycarbonyl‐l‐ornithine and of N‐alpha‐(9‐fluorenylmethoxy)carbonyl‐l‐ornithine. Org. Prep. Proced. Int. 2002; 34: 531–537.

Wiejak S, Masiukiewicz E, Rzeszotarska B. A large scale synthesis of mono‐ and di‐urethane derivatives of lysine. Chem. Pharm. Bull. 1999; 47: 1489–1490. PubMed

Wiejak S, Masiukiewicz E, Rzeszotarska B. Improved scalable syntheses of mono‐ and bis‐urethane derivatives of ornithine. Chem. Pharm. Bull. 2001; 49: 1189–1191. PubMed

Bayryamov SG, Vassilev NG, Petkov DD. The two pathways for effective orthogonal protection of l‐ornithine, for amino acylation of 5′‐O‐pivaloyl nucleosides, describe the general and important role for the successful imitation, during the synthesis of the model substrates for the ribosomal mimic reaction. Protein Pept. Lett. 2010; 17: 889–898. PubMed

Strazzolini P, Scuccato M, Giumanini AG. Deprotection of t‐butyl esters of amino acid derivatives by nitric acid in dichloromethane. Tetrahedron 2000; 56: 3625–3633.

Chevallet P, Garrouste P, Malawska B, Martinez J. Facile synthesis of tert‐butyl ester of N‐protected amino‐acids with tert‐butyl bromide. Tetrahedron Lett. 1993; 34: 7409–7412.

Fernandez S, Crocamo N, Incerti M, Giglio J, Scarone L, Rey A. Preparation and preliminary bioevaluation of a 99mTc(CO)3‐glucose derivative prepared by a click chemistry route. J. Label. Compd. Radiopharm. 2012; 55: 274–280.

Nishiyama K, Karigomi H. Reaction of trimethylsilyl azide with organic halides. Chem. Lett. 1982; 11: 1477–1478.

Photaki I. Transformation of serine to cysteine. β‐Elimination reactions in serine derivatives. J. Am. Chem. Soc. 1963; 85: 1123–1126.

Johansson H, Pedersen DS. Azide‐ and alkyne‐derivatised alpha‐amino acids. Eur. J. Org. Chem. 2012; 4267–4281.

Photaki I, Bardakos V. Transformation of l‐serine peptides to l‐cysteine peptides. J. Am. Chem. Soc. 1965; 87: 3489–3492. PubMed

Han JR, Lian JT, Tian X, Zhou SW, Zhen XL, Liu SX. Total synthesis of micromide: a marine natural product. Eur. J. Org. Chem. 2014; 7232‐7238.

Inamoto A, Ogasawara K, Omata K, Kabuto K, Sasaki Y. Samarium(III)‐propylenediaminetetraacetate complex: a water‐soluble chiral shift reagent for use in high‐field NMR. Org. Lett. 2000; 2: 3543–3545. PubMed

Hruba L, Budesinsky M, Picha J, Jiracek J, Vanek V. Simplified syntheses of the water‐soluble chiral shift reagents Sm‐(R)‐pdta and Sm‐(S)‐pdta. Tetrahedron Lett. 2013; 54: 6296–6297.

Fields GB, Noble RL. Solid‐phase peptide‐synthesis utilizing 9‐fluorenylmethoxycarbonyl amino‐acids. Int. J. Pept. Prot. Res. 1990; 35: 161–214. PubMed

Angelini G, Speranza M. Gas‐phase acid‐induced nucleophilic displacement‐reactions. 5. Quantitative‐evaluation of neighboring‐group participation in bifunctional compounds. J. Am. Chem.l Soc. 1981; 103: 3800–3806.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The final walk with preptin

. 2024 ; 19 (9) : e0309726. [epub] 20240912

Modulation of the antagonistic properties of an insulin mimetic peptide by disulfide bridge modifications

. 2023 Jul ; 29 (7) : e3478. [epub] 20230125

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace