The final walk with preptin
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39264940
PubMed Central
PMC11392399
DOI
10.1371/journal.pone.0309726
PII: PONE-D-24-18330
Knihovny.cz E-zdroje
- MeSH
- insulinu podobný růstový faktor II * metabolismus MeSH
- inzulin metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- peptidové fragmenty metabolismus MeSH
- proteinové prekurzory metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- IGF2 protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor II * MeSH
- inzulin MeSH
- peptidové fragmenty MeSH
- preptin MeSH Prohlížeč
- proteinové prekurzory MeSH
Preptin, a 34-amino acid peptide derived from pro-IGF2, is believed to influence various physiological processes, including insulin secretion and the regulation of bone metabolism. Despite its recognized involvement, the precise physiological role of preptin remains enigmatic. To address this knowledge gap, we synthesized 16 analogs of preptin, spanning a spectrum from full-length forms to fragments, and conducted comprehensive comparative activity evaluations alongside native human, mouse and rat preptin. Our study aimed to elucidate the physiological role of preptin. Contrary to previous indications of broad biological activity, our thorough analyses across diverse cell types revealed no significant biological activity associated with preptin or its analogs. This suggests that the associations of preptin with various diseases or tissue-specific abundance fluctuations may be influenced by factors beyond preptin itself, such as higher levels of IGF2 or IGF2 proforms present in tissues. In conclusion, our findings challenge the conventional notion of preptin as an isolated biologically active molecule and underscore the complexity of its interactions within biological systems. Rather than acting independently, the observed effects of preptin may arise from experimental conditions, elevated preptin concentrations, or interactions with related molecules such as IGF2.
Faculty of Science Department of Cell Biology Charles University Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Steiner DF, Cunningham D, Spigelman L, Aten B. Insulin Biosynthesis—Evidence for a Precursor. Science. 1967;157(3789):697–700. doi: 10.1126/science.157.3789.697 PubMed DOI
Chretien M, Li CH. Isolation Purification and Characterization of Gamma-Lipotropic Hormone from Sheep Pituitary Glands. Can J Biochem Cell B. 1967;45(7):1163–1174. doi: 10.1139/o67-133 PubMed DOI
Douglass J, Civelli O, Herbert E. Polyprotein Gene-Expression—Generation of Diversity of Neuroendocrine Peptides. Annu Rev Biochem. 1984;53:665–715. doi: 10.1146/annurev.bi.53.070184.003313 PubMed DOI
Chrétien M, Mbikay M. 60 year of POMC From the prohormone theory to pro-opiomelanocortin and to proprotein convertases (PCSK1 to PCSK9). J Mol Endocrinol. 2016;56(4):T49–T62. PubMed
Potalitsyn P, Mrázková L, Selicharová I, Tencerová M, Ferencáková M, Chrudinová M, et al.. Non-glycosylated IGF2 prohormones are more mitogenic than native IGF2. Commun Biol. 2023;6(1). doi: 10.1038/s42003-023-05239-6 PubMed DOI PMC
Duguay SJ, Jin Y, Stein J, Duguay AN, Gardner P, Steiner DF. Post-translational processing of the insulin-like growth factor-2 precursor—Analysis of O-glycosylation and endoproteolysis. J Biol Chem. 1998;273(29):18443–51. PubMed
Buchanan CM, Phillips ARJ, Cooper GJS. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion. Biochem J. 2001;360:431–9. doi: 10.1042/0264-6021:3600431 PubMed DOI PMC
Buchanan CM, Peng ZZ, Cefre A, Sarojini V. Preptin Analogues: Chemical Synthesis, Secondary Structure and Biological Studies. Chem Biol Drug Des. 2013;82(4):429–37. doi: 10.1111/cbdd.12168 PubMed DOI
Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin JM, et al.. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol-Endoc M. 2007;292(1):E117–E22. doi: 10.1152/ajpendo.00642.2005 PubMed DOI
Amso Z, Kowalczyk R, Watson M, Park YE, Callon KE, Musson DS, et al.. Structure activity relationship study on the peptide hormone preptin, a novel bone-anabolic agent for the treatment of osteoporosis. Org Biomol Chem. 2016;14(39):9225–38. doi: 10.1039/c6ob01455k PubMed DOI
Kowalczyk R, Yang SH, Brimble MA, Callon KE, Watson M, Park YE, et al.. Synthesis of truncated analogues of preptin-(1–16), and investigation of their ability to stimulate osteoblast proliferation. Bioorgan Med Chem. 2014;22(14):3565–72. PubMed
El-Eshmawy M, Aal IA. Relationships between preptin and osteocalcin in obese, overweight, and normal weight adults. Appl Physiol Nutr Me. 2015;40(3):218–22. doi: 10.1139/apnm-2014-0338 PubMed DOI
Yang GY, Li L, Chen WW, Liu H, Boden G, Li K. Circulating preptin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Ann Med. 2009;41(1):52–6. doi: 10.1080/07853890802244142 PubMed DOI
Celik O, Celik N, Hascalik S, Sahin I, Aydin S, Ozerol E. An appraisal of serum preptin levels in PCOS. Fertil Steril. 2011;95(1):314–6. doi: 10.1016/j.fertnstert.2010.08.058 PubMed DOI
Aslan M, Celik O, Karsavuran N, Celik N, Dogan DG, Botan E, et al.. Maternal serum and cord blood preptin levels in gestational diabetes mellitus. J Perinatol. 2011;31(5):350–5. doi: 10.1038/jp.2010.125 PubMed DOI
Wang R, Xue AL, Zheng WJ, Wang LC, Yan F, Hu WC, et al.. Elevated serum preptin concentrations in patients with diabetic nephropathy. J Invest Med. 2019;67(7):1048–52. doi: 10.1136/jim-2019-000985 PubMed DOI
Bosetti M, Sabbatini M, Nicoli E, Fusaro L, Cannas M. Effects and differentiation activity of IGF-I, IGF-II, insulin and preptin on human primary bone cells. Growth Factors. 2013;31(2):57–65. doi: 10.3109/08977194.2013.770392 PubMed DOI
Ozkan Y, Timurkan ES, Aydin S, Sahin I, Timurkan M, Citil C, et al.. Acylated and Desacylated Ghrelin, Preptin, Leptin, and Nesfatin-1 Peptide Changes Related to the Body Mass Index. Int J Endocrinol. 2013. PubMed PMC
Li N, Zheng YB, Han J, Liang W, Wang JY, Zhou JR, et al.. Lower circulating preptin levels in male patients with osteoporosis are correlated with bone mineral density and bone formation. BMC Musculoskel Dis. 2013;14. doi: 10.1186/1471-2474-14-49 PubMed DOI PMC
Kaluzna M, Pawlaczyk K, Schwermer K, Hoppe K, Ibrahim AY, Czlapka-Matyasik M, et al.. Is Preptin a New Bone Metabolism Parameter in Hemodialysis Patients? Life-Basel. 2021;11(4). doi: 10.3390/life11040341 PubMed DOI PMC
Lubos M, Mrazkova L, Gwozdiakova P, Picha J, Budesinsky M, Jiracek J, et al.. Functional stapled fragments of human preptin of minimised length. Org Biomol Chem. 2022;20(12):2446–54. doi: 10.1039/d1ob02193a PubMed DOI
Cheng KC, Li YX, Asakawa A, Ushikai M, Kato I, Sato Y, et al.. Characterization of preptin-induced insulin secretion in pancreatic beta-cells. J Endocrinol. 2012;215(1):43–9. PubMed
Pícha J, Budesínsky M, Machácková K, Collinsová M, Jirácek J. Optimized syntheses of Fmoc azido amino acids for the preparation of azidopeptides. J Pept Sci. 2017;23(3):202–14. doi: 10.1002/psc.2968 PubMed DOI PMC
Micsonai A, Moussong E, Wien F, Boros E, Vadaszi H, Murvai N, et al.. BeStSele: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 2022;50(W1):W90–W8. PubMed PMC
Micsonai A, Wien F, Bulyaki E, Kun J, Moussong E, Lee YH, et al.. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018;46(W1):W315–W22. doi: 10.1093/nar/gky497 PubMed DOI PMC
Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, Deangelis T, et al.. Effect of a Null Mutation of the Insulin-Like Growth-Factor-I Receptor Gene on Growth and Transformation of Mouse Embryo Fibroblasts. Mol Cell Biol. 1994;14(6):3604–12. doi: 10.1128/mcb.14.6.3604-3612.1994 PubMed DOI PMC
Miura M, Surmacz E, Burgaud JL, Baserga R. Different Effects on Mitogenesis and Transformation of a Mutation at Tyrosine-1251 of the Insulin-Like Growth-Factor-I Receptor. J Biol Chem. 1995;270(38):22639–44. doi: 10.1074/jbc.270.38.22639 PubMed DOI
Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al.. Insulin receptor isoform A, a newly recognized, high-affinity insulin- like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19(5):3278–88. doi: 10.1128/MCB.19.5.3278 PubMed DOI PMC
Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SIS, et al.. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol. 2002;20(6):592–6. doi: 10.1038/nbt0602-592 PubMed DOI
Hexnerova R, Krizkova K, Fabry M, Sieglova I, Kedrova K, Collinsova M, et al.. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. J Biol Chem. 2016;291(40):21234–45. doi: 10.1074/jbc.M116.741041 PubMed DOI PMC
Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, et al.. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A. J Biol Chem. 2012;287(14):11422–36. doi: 10.1074/jbc.M111.252478 PubMed DOI PMC
Kertisová A, Záková L, Machácková K, Marek A, Sácha P, Pompach P, et al.. Insulin receptor Arg717 and IGF-1 receptor Arg704 play a key role in ligand binding and in receptor activation. Open Biol. 2023;13(11). PubMed PMC
Asai S, Zakova L, Selicharova I, Marek A, Jiracek J. A radioligand receptor binding assay for measuring of insulin secreted by MIN6 cells after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. Anal Bioanal Chem. 2021;413(17):4531–43. doi: 10.1007/s00216-021-03423-3 PubMed DOI
Potalitsyn P, Selicharova I, Srsen K, Radosavljevic J, Marek A, Novakova K, et al.. A radioligand binding assay for the insulin-like growth factor 2 receptor. Plos ONE. 2020;15(9). doi: 10.1371/journal.pone.0238393 PubMed DOI PMC
Tencerova M, Frost M, Figeac F, Nielsen TK, Ali D, Lauterlein JJL, et al.. Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 2019;27(7):2050–2062. doi: 10.1016/j.celrep.2019.04.066 PubMed DOI
Zhu F, Kapitan J, Tranter GE, Pudney PDA, Isaacs NW, Hecht L, et al.. Residual structure in disordered peptides and unfolded proteins from multivariate analysis and ab initio simulation of Raman optical activity data. Proteins. 2008;70:823–33. doi: 10.1002/prot.21593 PubMed DOI
Adzhubei AA, Sternberg MJE, Makarov AA. Polyproline-II helix in proteins: structure and function. J Mol Biol. 2013;425:2100–32. doi: 10.1016/j.jmb.2013.03.018 PubMed DOI
Makarov AA, Esipova NG, Pankov YA, Lobachev VM, Grishkovsky BA. A conformational study of β - melanocyte-stimulating hormone. Biochem Biophys Res Commun. 1975;67:1378–83. PubMed
Klec C, Ziomek G, Pichler M, Malli R, Graier WF. Calcium Signaling in ss-cell Physiology and Pathology: A Revisit. Int J Mol Sci. 2019;20(24). PubMed PMC
Tengholm A. Cyclic AMP dynamics in the pancreatic β-cell. Upsala J Med Sci. 2012;117(4):355–69. PubMed PMC
Ruminski S, Kalaszczynska I, Lewandowska-Szumiel M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells-Basel. 2020;9(7). doi: 10.3390/cells9071587 PubMed DOI PMC
Dzianova P, Asai S, Chrudinova M, Kosinova L, Potalitsyn P, Sacha P, et al.. The efficiency of insulin production and its content in insulin-expressing model beta-cells correlate with their Zn2+ levels. Open Biol. 2020;10(10). PubMed PMC
Liu YS, Lu Y, Liu W, Xie H, Luo XH, Wu XP, et al.. Connective tissue growth factor is a downstream mediator for preptin-induced proliferation and differentiation in human osteoblasts. Amino Acids. 2010;38(3):763–9. doi: 10.1007/s00726-009-0281-4 PubMed DOI
Xiao CY, Li W, Lu TL, Wang JY, Han J. Preptin promotes proliferation and osteogenesis of MC3T3-E1 cells by upregulating beta-catenin expression. IUBMB Life. 2019;71(7):854–62. PubMed
Buckels EJ, Hsu HL, Buchanan CM, Matthews BG, Lee KL. Genetic ablation of the preptin-coding portion of Igf2 impairs pancreatic function in female mice. Am J Physiol Endocrinol Metab. 2022;323(6):E467–E79. doi: 10.1152/ajpendo.00401.2021 PubMed DOI
Buckels EJ, Tan J, Hsu HL, Zhu YT, Buchanan CM, Matthews BG, et al.. Preptin Deficiency Does Not Protect against High-Fat Diet-Induced Metabolic Dysfunction or Bone Loss in Mice. JBMR Plus. 2023;7(8). doi: 10.1002/jbm4.10777 PubMed DOI PMC