The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn2+ levels

. 2020 Oct ; 10 (10) : 200137. [epub] 20201021

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33081637

Grantová podpora
MR/R009066/1 Medical Research Council - United Kingdom
MR/K000179/1 Medical Research Council - United Kingdom
MR/R009066/1 Medical Research Council - United Kingdom

Insulin is produced and stored inside the pancreatic β-cell secretory granules, where it is assumed to form Zn2+-stabilized oligomers. However, the actual storage forms of this hormone and the impact of zinc ions on insulin production in vivo are not known. Our initial X-ray fluorescence experiment on granules from native Langerhans islets and insulinoma-derived INS-1E cells revealed a considerable difference in the zinc content. This led our further investigation to evaluate the impact of the intra-granular Zn2+ levels on the production and storage of insulin in different model β-cells. Here, we systematically compared zinc and insulin contents in the permanent INS-1E and BRIN-BD11 β-cells and in the native rat pancreatic islets by flow cytometry, confocal microscopy, immunoblotting, specific messenger RNA (mRNA) and total insulin analysis. These studies revealed an impaired insulin production in the permanent β-cell lines with the diminished intracellular zinc content. The drop in insulin and Zn2+ levels was paralleled by a lower expression of ZnT8 zinc transporter mRNA and hampered proinsulin processing/folding in both permanent cell lines. To summarize, we showed that the disruption of zinc homeostasis in the model β-cells correlated with their impaired insulin and ZnT8 production. This indicates a need for in-depth fundamental research about the role of zinc in insulin production and storage.

Zobrazit více v PubMed

Orci L, Ravazzola M, Amherdt M, Madsen O, Vassalli JD, Perrelet A. 1985. Direct identification of prohormone conversion site in insulin-secreting cells. Cell 42, 671–681. (10.1016/0092-8674(85)90124-2) PubMed DOI

Straub SG, Sharp GWG. 2004. Massive augmentation of stimulated insulin secretion induced by fatty acid-free BSA in rat pancreatic islets. Diabetes 53, 3152–3158. (10.2337/diabetes.53.12.3152) PubMed DOI

Suckale J, Solimena M. 2010. The insulin secretory granule as a signaling hub. Trends Endocrinol. Metab. 21, 599–609. (10.1016/j.tem.2010.06.003) PubMed DOI

Steiner DF, Park SY, Stoy J, Philipson LH, Bell GI. 2009. A brief perspective on insulin production. Diab. Obes. Metab. 11, 189–196. (10.1111/j.1463-1326.2009.01106.x) PubMed DOI

Foster MC, Leapman RD, Li MX, Atwater I. 1993. Elemental composition of secretory granules in pancreatic-islets of Langerhans. Biophys. J. 64, 525–532. (10.1016/S0006-3495(93)81397-3) PubMed DOI PMC

Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. 1980. Role of zinc in insulin-biosynthesis - some possible zinc-insulin interactions in the pancreatic B-Cell. Diabetologia. 19, 174–182. (10.1007/Bf00275265) PubMed DOI

Weiss MA. 2009. The structure and function of insulin: decoding the TR transition. In Insulin and IGFs (ed. Litwack G.), pp. 33–49. San Diego, CA: Elsevier Academic Press, Inc. PubMed PMC

Michael J, Carroll R, Swift HH, Steiner DF. 1987. Studies on the molecular organization of rat insulin secretory granules. J. Biol. Chem. 262, 16 531–16 535. PubMed

Lisi GP, Png CYM, Wilcox DE. 2014. Thermodynamic contributions to the stability of the insulin hexamer. Biochemistry 53, 3576–3584. (10.1021/bi401678n) PubMed DOI

Hassiepen U, Stahl J, Motzka B, Federwisch M. 2002. The association/dissotiation equilibria of insulin in the presence of metal ions: a fluorescence energy transfer and circular dichroism study. In Alcuin symposium on insulin and related proteins (ed. Dieken ML, Federwisch M, DeMeyts P), pp. 41–51. Aachen, Germany: Springer.

Antolikova E, et al. 2011. Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. J. Biol. Chem. 286, 36 968–36 977. (10.1074/jbc.M111.265249) PubMed DOI PMC

Kosinova L, et al. 2014. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 53, 3392–3402. (10.1021/Bi500073z) PubMed DOI PMC

Jiracek J, Zakova L, Antolikova E, Watson CJ, Turkenburg JP, Dodson GG, Brzozowski AM. 2010. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc. Natl Acad. Sci. USA 107, 1966–1970. (10.1073/pnas.0911785107) PubMed DOI PMC

Palivec V, et al. . 2017. Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules. J. Biol. Chem. 292, 8342–8355. (10.1074/jbc.M117.775924) PubMed DOI PMC

Brezina K, Duboue-Dijon E, Palivec V, Jiracek J, Krizek T, Viola CM, Ganderton TR, Brzozowski AM, Jungwirth P. 2018. Can arginine inhibit insulin aggregation? A combined protein crystallography, capillary electrophoresis, and molecular simulation study. J. Phys. Chem. B 122, 10 069–10 076. (10.1021/acs.jpcb.8b06557) PubMed DOI

Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC. 2007. Proteomics analysis of insulin secretory granules. Mol. Cell. Proteomics 6, 1007–1017. (10.1074/mcp.M600443-MCP200) PubMed DOI

Puri S, et al. 2018. Replication confers beta cell immaturity. Nat. Commun. 9, 485 (10.1038/s41467-018-02939-0) PubMed DOI PMC

Sole VA, Papillon E, Cotte M, Walter P, Susini J. 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 62, 63–68. (10.1016/j.sab.2006.12.002) DOI

Arslan P, Divirgilio F, Beltrame M, Tsien RY, Pozzan T. 1985. Cytosolic Ca2+ homeostasis in ehrlich and yoshida carcinomas: a new, membrane-permeant chelator of heavy-metals reveals that these ascites tumor-cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260, 2719–2727. PubMed

Steiner DF. 2011. Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286, 17 399–17 421. (10.1074/jbc.X111.244764) PubMed DOI PMC

Fava E, Dehghany J, Ouwendijk J, Muller A, Niederlein A, Verkade P, Meyer-Hermann M, Solimena M. 2012. Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling. Diabetologia 55, 1013–1023. (10.1007/s00125-011-2438-4) PubMed DOI PMC

Slepchenko KG, James CBL, Li YV. 2013. Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting-cell line. Exp. Physiol. 98, 1301–1311. (10.1113/expphysiol.2013.072348) PubMed DOI

Hohmeier HE, Newgard CB. 2004. Cell lines derived from pancreatic islets. Mol. Cell. Endocrinol. 228, 121–128. (10.1016/j.mce.2004.04.017) PubMed DOI

Scharfmann R, Rachdi L, Ravassard P. 2013. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cell. Transl. Med. 2, 61–67. (10.5966/sctm.2012-0120) PubMed DOI PMC

Sondergaard LG, Brock B, Stoltenberg M, Flyvbjerg A, Schmitz O, Smidt K, Danscher G, Rungby J. 2005. Zinc fluxes during acute and chronic exposure of INS-1E cells to increasing glucose levels. Horm. Metab. Res. 37, 133–139. (10.1055/s-2005-861290) PubMed DOI

Smidt K, et al. . 2009. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE 4, e5684 (10.1371/journal.pone.0005684) PubMed DOI PMC

Petersen AB, Smidt K, Magnusson NE, Moore F, Egefjord L, Rungby J. 2011. siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. Apmis 119, 93–102. (10.1111/j.1600-0463.2010.02698.x) PubMed DOI

Nygaard SB, Larsen A, Knuhtsen A, Rungby J, Smidt K. 2014. Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res. Notes 7, 84 (10.1186/1756-0500-7-84) PubMed DOI PMC

Hamid M, McCluskey JT, McClenaghan NH, Flatt PR. 2002. Comparison of the secretory properties of four insulin-secreting cell lines. Endocr. Res. 28, 35–47. (10.1081/Erc-120004536) PubMed DOI

McClenaghan NH, Flatt PR. 1999. Engineering cultured insulin-secreting pancreatic B-cell lines. J. Mol. Med. 77, 235–243. (10.1007/s001090050344) PubMed DOI

Huang K, Dong J, Phillips NB, Carey PR, Weiss MA. 2005. Proinsulin is refractory to protein fibrillation: topological protection of a precursor protein from cross-beta assembly. J. Biol. Chem. 280, 42 345–42 355. (10.1074/jbc.M507110200) PubMed DOI

Dodson G, Steiner D. 1998. The role of assembly in insulin's biosynthesis. Curr. Opin. Struct. Biol. 8, 189–194. (10.1016/S0959-440X(98)80037-7) PubMed DOI

Baker EN, et al. 1988. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Phil. Trans. R. Soc. B 319, 369–456. (10.1098/rstb.1988.0058) PubMed DOI

Chimienti F, et al. . 2006. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119, 4199–4206. (10.1242/jcs.03164) PubMed DOI

Lemaire K, Chimienti F, Schuit F. 2012. Zinc transporters and their role in the pancreatic ss-cell. J. Diabetes Investig. 3, 202–211. (10.1111/j.2040-1124.2012.00199.x) PubMed DOI PMC

Chimienti F, Devergnas S, Favier A, Seve M. 2004. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53, 2330–2337. (10.2337/diabetes.53.9.2330) PubMed DOI

Li J, Klughammer J, Farlik M, Penz T, Spittler A, Barbieux C, Berishvili E, Bock C, Kubicek S. 2016. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types. EMBO Rep. 17, 178–187. (10.15252/embr.201540946) PubMed DOI PMC

Akbarzadeh A, Norouzian D, Farhangi A, Mehrabi MR, Jamshidi S, Zare D, Shafiei M. 2008. Isolation and purification of rat islet cells by flow cytometry. Indian J. Clin. Bioch. 23, 57–61. (10.1007/s12291-008-0014-6) PubMed DOI PMC

Komminoth P, Heitz PU, Roth J. 1999. Human insulinoma: clinical, cellular, and molecular aspects. Endocr. Pathol. 10, 269–281. (10.1007/Bf02739769) PubMed DOI

Roth J, Kloppel G, Madsen OD, Storch MJ, Heitz PU. 1992. Distribution patterns of proinsulin and insulin in human insulinoma S - an immunohistochemical analysis in 76 tumors. Virchows Arch. B 63, 51–61. (10.1007/BF02899244) PubMed DOI

Umeda M, Hiramoto M, Watanabe A, Tsunoda N, Imai T. 2015. Arginine-induced insulin secretion in endoplasmic reticulum. Biochem. Biophys. Res. Commun. 466, 717–722. (10.1016/j.bbrc.2015.09.006) PubMed DOI

Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB. 2003. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat. Cell Biol. 5, 330–335. (10.1038/ncb951) PubMed DOI

Chimienti F, Seve M, Richard S, Mathieu J, Favier A. 2001. Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem. Pharmacol. 62, 51–62. (10.1016/S0006-2952(01)00624-4) PubMed DOI

Kim BJ, Kim YH, Kim S, Kim JW, Koh JY, Oh SH, Lee MK, Kim KW, Lee MS. 2000. Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49, 367–372. (10.2337/diabetes.49.3.367) PubMed DOI

Prasad AS. 2012. Discovery of human zinc deficiency: 50 years later. J. Trace Elem. Med. Biol. 26, 66–69. (10.1016/j.jtemb.2012.04.004) PubMed DOI

El-Yazigi A, Hannan N, Raines DA. 1993. Effect of diabetic state and related disorders on the urinary excretion of magnesium and zinc in patients. Diabetes Res. 22, 67–75. PubMed

Quarterman J, Mills CF, Humphries WR. 1966. The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem. Biophys. Res. Commun. 25, 354–358. (10.1016/0006-291X(66)90785-6) PubMed DOI

Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. 2004. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145, 667–678. (10.1210/en.2003-1099) PubMed DOI

Asfari M, Janjic D, Meda P, Li GD, Halban PA, Wollheim CB. 1992. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell-lines. Endocrinology 130, 167–178. (10.1210/En.130.1.167) PubMed DOI

Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V. 1980. Continuous, clonal, insulin-secreting and somatostatin-secreting cell-lines established from a transplantable rat islet cell tumor. Proc. Natl Acad. Sci. USA 77, 3519–3523. (10.1073/pnas.77.6.3519) PubMed DOI PMC

McClenaghan NH, Elsner M, Tiedge M, Lenzen S. 1998. Molecular characterization of the glucose-sensing mechanism in the clonal insulin-secreting BRIN-BD11 cell line. Biochem. Biophys. Res. Commun. 242, 262–266. (10.1006/bbrc.1997.7947) PubMed DOI

Saudek F, Cihalova E, Karasova L, Kobylka P, Lomsky R. 1999. Increased glucagon-stimulated insulin secretion of cryopreserved rat islets transplanted into nude mice. J. Mol. Med. 77, 107–110. (10.1007/s001090050313) PubMed DOI

Fuzik T, et al. 2016. Nucleic acid binding by mason-Pfizer monkey virus CA promotes virus assembly and genome packaging. J. Virol. 90, 4593–4603. (10.1128/Jvi.03197-15) PubMed DOI PMC

1976. Structural studies on des-pentapeptide (B26–30)-insulin. V. High resolution NMR studies. Sci. Sin. 19, 497–504. PubMed

Schagger H. 2006. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22. (10.1038/nprot.2006.4) PubMed DOI

Carlsson A, Hallgren IB, Johansson H, Sandler S. 2010. Concomitant enzyme-linked immunosorbent assay measurements of rat insulin, rat C-peptide, and rat proinsulin from rat pancreatic islets: effects of prolonged exposure to different glucose concentrations. Endocrinology 151, 5048–5052. (10.1210/en.2010-0433) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...