Computational and structural evidence for neurotransmitter-mediated modulation of the oligomeric states of human insulin in storage granules
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/K000179/1
Medical Research Council - United Kingdom
PubMed
28348075
PubMed Central
PMC5437240
DOI
10.1074/jbc.m117.775924
PII: S0021-9258(20)39414-X
Knihovny.cz E-zdroje
- Klíčová slova
- crystal structure, dopamine, insulin, pancreatic islet, serotonin, vesicles,
- MeSH
- beta-buňky * chemie metabolismus MeSH
- biologické modely * MeSH
- inzulin * chemie metabolismus MeSH
- lidé MeSH
- multimerizace proteinu * MeSH
- neurotransmiterové látky metabolismus MeSH
- počítačová simulace * MeSH
- sekreční vezikuly * chemie metabolismus MeSH
- serotonin metabolismus MeSH
- simulace molekulární dynamiky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin * MeSH
- neurotransmiterové látky MeSH
- serotonin MeSH
Human insulin is a pivotal protein hormone controlling metabolism, growth, and aging and whose malfunctioning underlies diabetes, some cancers, and neurodegeneration. Despite its central position in human physiology, the in vivo oligomeric state and conformation of insulin in its storage granules in the pancreas are not known. In contrast, many in vitro structures of hexamers of this hormone are available and fall into three conformational states: T6, T3Rf3, and R6 As there is strong evidence for accumulation of neurotransmitters, such as serotonin and dopamine, in insulin storage granules in pancreatic β-cells, we probed by molecular dynamics (MD) and protein crystallography (PC) if these endogenous ligands affect and stabilize insulin oligomers. Parallel studies independently converged on the observation that serotonin binds well within the insulin hexamer (site I), stabilizing it in the T3R3 conformation. Both methods indicated serotonin binding on the hexamer surface (site III) as well. MD, but not PC, indicated that dopamine was also a good site III ligand. Some of the PC studies also included arginine, which may be abundant in insulin granules upon processing of pro-insulin, and stable T3R3 hexamers loaded with both serotonin and arginine were obtained. The MD and PC results were supported further by in solution spectroscopic studies with R-state-specific chromophore. Our results indicate that the T3R3 oligomer is a plausible insulin pancreatic storage form, resulting from its complex interplay with neurotransmitters, and pro-insulin processing products. These findings may have implications for clinical insulin formulations.
Zobrazit více v PubMed
Taniguchi C. M., Emanuelli B., and Kahn C. R. (2006) Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 PubMed
Cohen P. (2006) Timeline: the twentieth century struggle to decipher insulin signalling. Nat. Rev. Mol. Cell Biol. 7, 867–873 PubMed
Atkinson M. A., Eisenbarth G. S., and Michels A. W. (2014) Type 1 diabetes. Lancet 383, 69–82 PubMed PMC
Taylor S. I., Accili D., and Imai Y. (1994) Insulin resistance or insulin deficiency: which is the primary cause of Niddm. Diabetes 43, 735–740 PubMed
Turner R. C., Hattersley A. T., Shaw J. T., and Levy J. C. (1995) Type-II Diabetes: clinical aspects of molecular biological studies. Diabetes 44, 1–10 PubMed
Giovannucci E., Harlan D. M., Archer M. C., Bergenstal R. M., Gapstur S. M., Habel L. A., Pollak M., Regensteiner J. G., and Yee D. (2010) Diabetes and cancer: a consensus report. CA Cancer J. Clin. 60, 207–221 PubMed
Vigneri P., Frasca F., Sciacca L., Pandini G., and Vigneri R. (2009) Diabetes and cancer. Endocr. Relat. Cancer 16, 1103–1123 PubMed
Cohen D. H., and LeRoith D. (2012) Obesity, type 2 diabetes, and cancer: the insulin and IGF connection. Endocr. Relat. Cancer 19, F27–F45 PubMed
Arrieta-Cruz I., and Gutiérrez-Juárez R. (2016) The role of insulin resistance and glucose metabolism dysregulation in the development of Alzheimer's disease. Rev. Invest. Clin. 68, 53–58 PubMed
McKern N. M., Lawrence M. C., Streltsov V. A., Lou M. Z., Adams T. E., Lovrecz G. O., Elleman T. C., Richards K. M., Bentley J. D., Pilling P. A., Hoyne P. A., Cartledge K. A., Pham T. M., Lewis J. L., Sankovich S. E., et al. (2006) Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443, 218–221 PubMed
Lemmon M. A., and Schlessinger J. (2010) Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 PubMed PMC
Adams M. J., Blundell T. L., Dodson E. J., Dodson G. G., Vijayan M., Baker E. N., Harding M. M., Hodgkin D. C., Rimmer B., and Sheat S. (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224, 491–495
Dodson G., and Steiner D. (1998) The role of assembly in insulin's biosynthesis. Curr. Opin. Struct. Biol. 8, 189–194 PubMed
Mayer J. P., Zhang F., and DiMarchi R. D. (2007) Insulin structure and function. Biopolymers 88, 687–713 PubMed
Ward C. W., and Lawrence M. C. (2011) Landmarks in insulin research. Front. Endocrinol. 2, 76 PubMed PMC
Weiss M. A. (2009) The structure and function of insulin: decoding the TR transition. In Insulin and IGFs (Litwack G., ed.), pp. 33–49, Elsevier Academic Press, Inc., San Diego CA PubMed PMC
Menting J. G., Whittaker J., Margetts M. B., Whittaker L. J., Kong G. K., Smith B. J., Watson C. J., Záková L., Kletvíková E., Jiráček J., Chan S. J., Steiner D. F., Dodson G. G., Brzozowski A. M., Weiss M. A., Ward C. W., and Lawrence M. C. (2013) How insulin engages its primary binding site on the insulin receptor. Nature 493, 241–245 PubMed PMC
Menting J. G., Yang Y., Chan S. J., Phillips N. B., Smith B. J., Whittaker J., Wickramasinghe N. P., Whittaker L. J., Pandyarajan V., Wan Z. L., Yadav S. P., Carroll J. M., Strokes N., Roberts C. T. Jr., Ismail-Beigi F., et al. (2014) Protective hinge in insulin opens to enable its receptor engagement. Proc. Natl. Acad. Sci. U.S.A. 111, E3395–E3404 PubMed PMC
Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Reynolds C. D., Smith G. D., Sparks C., and Swenson D. (1989) Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature 338, 594–596 PubMed
Bentley G., Dodson E., Dodson G., Hodgkin D., and Mercola D. (1976) Structure of insulin in 4-zinc insulin. Nature 261, 166–168 PubMed
Smith G. D., Swenson D. C., Dodson E. J., Dodson G. G., and Reynolds C. D. (1984) Structural stability in the 4-zinc human insulin hexamer. Proc. Natl. Acad. Sci. U.S.A. 81, 7093–7097 PubMed PMC
Brzović P. S., Choi W. E., Borchardt D., Kaarsholm N. C., and Dunn M. F. (1994) Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer. Biochemistry 33, 13057–13069 PubMed
Smith G. D., and Ciszak E. (1994) The structure of a complex of hexameric insulin and 4′-hydroxyacetanilide. Proc. Natl. Acad. Sci. U.S.A. 91, 8851–8855 PubMed PMC
Whittingham J. L., Chaudhuri S., Dodson E. J., Moody P. C., and Dodson G. G. (1995) X-ray crystallographic studies on hexameric insulins in the presence of helix-stabilizing agents, thiocyanate, methylparaben, and phenol. Biochemistry 34, 15553–15563 PubMed
Smith G. D., Ciszak E., and Pangborn W. (1996) A novel complex of a phenolic derivative with insulin: structural features related to the T→R transition. Protein Sci. 5, 1502–1511 PubMed PMC
Dunn M. F. (2005) Zinc-ligand interactions modulate assembly and stability of the insulin hexamer: a review. Biometals 18, 295–303 PubMed
Ciszak E., and Smith G. D. (1994) Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamer. Biochemistry 33, 1512–1517 PubMed
Smith G. D. (1998) The phenolic binding site in T3R3f insulin. J. Mol. Struct. 470, 71–80
Whittingham J. L., Edwards D. J., Antson A. A., Clarkson J. M., and Dodson G. G. (1998) Interactions of phenol and m-cresol in the insulin hexamer, and their effect on the association properties of B28 Pro → Asp insulin analogues. Biochemistry 37, 11516–11523 PubMed
Rahuel-Clermont S., French C. A., Kaarsholm N. C., Dunn M. F., and Chou C. I. (1997) Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Biochemistry 36, 5837–5845 PubMed
Falck B., and Hellman B. (1963) Evidence for presence of biogenic amines in pancreatic islets. Experientia 19, 139–140
Lundquist I., Ekholm R., and Ericson L. E. (1971) Monoamines in pancreatic-islets of mouse 5-hydroxytryptamine as an intracellular modifier of insulin secretion and hypoglycemic action of monoamine-oxidase inhibitors. Diabetologia 7, 414–422 PubMed
Ustione A., Piston D. W., and Harris P. E. (2013) Minireview: dopaminergic regulation of insulin secretion from the pancreatic islet. Mol. Endocrinol. 27, 1198–1207 PubMed PMC
Julius D., Brake A., Blair L., Kunisawa R., and Thorner J. (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37, 1075–1089 PubMed
Fricker L. D., Evans C. J., Esch F. S., and Herbert E. (1986) Cloning and sequence analysis of cdna for bovine carboxypeptidase-E. Nature 323, 461–464 PubMed
Hagedorn H. C., Jensen B. N., Krarup N. B., and Wodstrup I. (1936) Protamine insulinate. JAMA 106, 177–180 PubMed
Norrman M., Hubálek F., and Schluckebier G. (2007) Structural characterization of insulin NPH formulations. Eur. J. Pharm. Sci. 30, 414–423 PubMed
Smith G. D., Pangborn W. A., and Blessing R. H. (2001) Phase changes in T3R3f human insulin: temperature or pressure induced? Acta Crystallogr. D. 57, 1091–1100 PubMed
Bentley G., Dodson G., and Lewitova A. (1978) Rhombohedral insulin crystal transformation. J. Mol. Biol. 126, 871–875 PubMed
Wagner A., Diez J., Schulze-Briese C., and Schluckebier G. (2009) Crystal structure of ultralente: a microcrystalline insulin suspension. Proteins 74, 1018–1027 PubMed
Steensgaard D. B., Schluckebier G., Strauss H. M., Norrman M., Thomsen J. K., Friderichsen A. V., Havelund S., and Jonassen I. (2013) Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52, 295–309 PubMed
Smeekens S. P., Avruch A. S., LaMendola J., Chan S. J., and Steiner D. F. (1991) Identification of a cdna-encoding a 2nd putative prohormone convertase related to Pc2 in Att20 cells and islets of Langerhans. Proc. Natl. Acad. Sci. U.S.A. 88, 340–344 PubMed PMC
Smeekens S. P., and Steiner D. F. (1990) Identification of a human insulinoma cdna-encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265, 2997–3000 PubMed
Brader M. L., Kaarsholm N. C., Lee R. W., and Dunn M. F. (1991) Characterization of the R-state insulin hexamer and its derivatives: the hexamer is stabilized by heterotropic ligand-binding interactions. Biochemistry 30, 6636–6645 PubMed
Choi W. E., Brader M. L., Aguilar V., Kaarsholm N. C., and Dunn M. F. (1993) The allosteric transition of the insulin hexamer is modulated by homotropic and heterotropic interactions. Biochemistry 32, 11638–11645 PubMed
Huus K., Havelund S., Olsen H. B., Sigurskjold B. W., van de Weert M., and Frokjaer S. (2006) Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer. Biochemistry 45, 4014–4024 PubMed
Lisi G. P., Png C. Y., and Wilcox D. E. (2014) Thermodynamic contributions to the stability of the insulin hexamer. Biochemistry 53, 3576–3584 PubMed
Seydoux J., and Girardie L. (1974) Evidence for 2 receptor areas in brown adipose-tissue (Bat). Experientia 30, 683–683
Arakawa T., Ejima D., Tsumoto K., Obeyama N., Tanaka Y., Kita Y., and Timasheff S. N. (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys. Chem. 127, 1–8 PubMed
Nuhu M. M., and Curtis R. (2015) Arginine dipeptides affect insulin aggregation in a pH- and ionic strength-dependent manner. Biotechnol. J. 10, 404–416 PubMed
Nicolson T. J., Bellomo E. A., Wijesekara N., Loder M. K., Baldwin J. M., Gyulkhandanyan A. V., Koshkin V., Tarasov A. I., Carzaniga R., Kronenberger K., Taneja T. K., da Silva Xavier G., Libert S., Froguel P., Scharfmann R., et al. (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58, 2070–2083 PubMed PMC
Fava E., Dehghany J., Ouwendijk J., Müller A., Niederlein A., Verkade P., Meyer-Hermann M., and Solimena M. (2012) Novel standards in the measurement of rat insulin granules combining electron microscopy, high-content image analysis and in silico modelling. Diabetologia 55, 1013–1023 PubMed PMC
Tsuboi T., and Rutter G. A. (2003) Multiple forms of “kiss-and-run” exocytosis revealed by evanescent wave microscopy. Curr. Biol. 13, 563–567 PubMed
Conlon J. M. (2001) Evolution of the insulin molecule: insights into structure activity and phylogenetic relationships. Peptides 22, 1183–1193 PubMed
Chami B., Steel A. J., De La Monte S. M., and Sutherland G. T. (2016) The rise and fall of insulin signaling in Alzheimer's disease. Metab. Brain. Dis. 31, 497–515 PubMed
Steen E., Terry B. M., Rivera E. J., Cannon J. L., Neely T. R., Tavares R., Xu X. J., Wands J. R., and de la Monte S. M. (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease: is this type 3 diabetes? J. Alzheimers Dis. 7, 63–80 PubMed
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti D. S., Cheatham T. E., Darden T. A., Duke R. E., Gohlke A. W., Goetz A. W., Gusarov S., Homeyer N., Janowski P., Kaus J., et al. (2014) AMBER 14, University of California, San Francisco
Salomon-Ferrer R., Götz A. W., Poole D., Le Grand S., and Walker R. C. (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 PubMed
Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., and Kollman P. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 PubMed
Berendsen H. J. C., Grigera J. R., and Straatsma T. P. (1987) The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271
Berendsen H. J. C., Postma J. P. M., Vangunsteren W. F., Dinola A., and Haak J. R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., and Pedersen L. G. (1995) A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593
Miyamoto S., and Kollman P. A. (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13, 952–962
Hutton J. C. (1982) The internal pH and membrane potential of the insulin-secretory granule. Biochem. J. 204, 171–178 PubMed PMC
Ishikawa T., Chatake T., Morimoto Y., Maeda M., Kurihara K., Tanaka I., and Niimura N. (2008) An abnormal pK (a) value of internal histidine of the insulin molecule revealed by neutron crystallographic analysis. Biochem. Biophys. Res. Commun. 376, 32–35 PubMed
Bryant C., Spencer D. B., Miller A., Bakaysa D. L., McCune K. S., Maple S. R., Pekar A. H., and Brems D. N. (1993) Acid stabilization of insulin. Biochemistry 32, 8075–8082 PubMed
Chang X., Jorgensen A. M., Bardrum P., and Led J. J. (1997) Solution structures of the R-6 human insulin hexamer. Biochemistry 36, 9409–9422 PubMed
Wang J., Wang W., Kollman P. A., and Case D. A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model 25, 247–260 PubMed
Frisch M. J. T., Schlegel G. W. H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian, et al. (2009) Gaussian 09, Revision A.1. Wallingford, CT
Leontyev I., and Stuchebrukhov A. (2011) Accounting for electronic polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13, 2613–2626 PubMed
Leontyev I. V., and Stuchebrukhov A. A. (2012) Polarizable mean-field model of water for biological simulations with AMBER and CHARMM force fields. J. Chem. Theory Comput. 8, 3207–3216 PubMed PMC
Leontyev I. V., and Stuchebrukhov A. A. (2014) Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models. J. Chem. Phys. 141, 014103 PubMed PMC
Kohagen M., Mason P. E., and Jungwirth P. (2016) Accounting for electronic polarization effects in aqueous sodium chloride via molecular dynamics aided by neutron scattering. J. Phys. Chem. B 120, 1454–1460 PubMed
Winter G. (2010) xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190
Emsley P., and Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 PubMed
Collaborative Computational Project, Number 4 (1994) The Ccp4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 PubMed
Vagin A., and Teplyakov A. (1997) MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025
Smith G. D., Pangborn W. A., and Blessing R. H. (2003) The structure of T-6 human insulin at 1.0 angstrom resolution. Acta Crystallogr. D Biol. Crystallogr. 59, 474–482 PubMed
Murshudov G. N., Vagin A. A., and Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 53, 240–255 PubMed
McNicholas S., Potterton E., Wilson K. S., and Noble M. E. (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D. 67, 386–394 PubMed PMC
Huang S. T., Choi W. E., Bloom C., Leuenberger M., and Dunn M. F. (1997) Carboxylate ions are strong allosteric ligands for the HisB10 sites of the R-state insulin hexamer. Biochemistry 36, 9878–9888 PubMed
Bloom C. R., Wu N., Dunn A., Kaarsholm N. C., and Dunn M. F. (1998) Comparison of the allosteric properties of the Co(II)- and Zn(II)-substituted insulin hexamers. Biochemistry 37, 10937–10944 PubMed
Cornell W. D., Cieplak P., Bayly C. I., and Kollmann P. A. (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 115, 9620–9631
Reed A. E., Weinstock R. B, and Weinhold F. (1985) Natural population analysis. J. Chem. Phys. 83, 735–746
Becke A. D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652
Lee C., Yang W., and Parr R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 PubMed
Characterization of insulin crystalline form in isolated β-cell secretory granules
PDB
1MPJ, 1TYL, 1BEN, 2TCI, 1G7A, 1AIY, 1MSO