The genome sequence of Synechocystis sp. PCC 6803 substrain GT-T and its implications for the evolution of PCC 6803 substrains
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36792971
PubMed Central
PMC10068330
DOI
10.1002/2211-5463.13576
Knihovny.cz E-zdroje
- Klíčová slova
- Synechocystis sp. PCC 6803, chromosome sequence, cyanobacteria,
- MeSH
- mutace MeSH
- Synechocystis * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Synechocystis sp. PCC 6803 is a model cyanobacterium, glucose-tolerant substrains of which are commonly used as laboratory strains. In recent years, it has become evident that 'wild-type' strains used in different laboratories show some differences in their phenotypes. We report here the chromosome sequence of our Synechocystis sp. PCC 6803 substrain, named substrain GT-T. The chromosome sequence of GT-T was compared to those of two other commonly used laboratory substrains, GT-S and PCC-M. We identified 11 specific mutations in the GT-T substrain, whose physiological consequences are discussed. We also provide an update on evolutionary relationships between different Synechocystis sp. PCC 6803 substrains.
Department of Life Sciences Molecular Plant Biology University of Turku Finland
Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Zobrazit více v PubMed
Stanier RY, Kunisawa R, Mandel M and Cohen‐Bazire G (1971) Purification and properties of unicellular blue‐green algae (order Chroococcales). Bacteriol Rev 35, 171–205. PubMed PMC
Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein‐coding regions. DNA Res 3, 109–136. PubMed
Ikeuchi M and Tabata S (2001) Synechocystis sp. PCC 6803 – a useful tool in the study of the genetics of cyanobacteria. Photosynth Res 70, 73–83. PubMed
Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167, 766–778.
Anderson SL and McIntosh L (1991) Light‐activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue‐light‐requiring process. J Bacteriol 173, 2761–2767. PubMed PMC
Wilde A, Härtel H, Hübschmann T, Hoffmann P, Shestakov SV and Börner T (1995) Inactivation of a Synechocystis sp strain PCC 6803 gene with homology to conserved chloroplast open reading frame 184 increases the photosystem II‐to‐photosystem I ratio. Plant Cell 7, 649–658. PubMed PMC
Ding Q, Chen G, Wang Y and Wei D (2015) Identification of specific variations in a non‐motile strain of cyanobacterium Synechocystis sp. PCC 6803 originated from ATCC 27184 by whole genome resequencing. Int J Mol Sci 16, 24081–24093. PubMed PMC
Tajima N, Sato S, Maruyama F, Kaneko T, Sasaki NV, Kurokawa K, Ohta H, Kanesaki Y, Yoshikawa H, Tabata S et al. (2011) Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT‐S. DNA Res 18, 393–399. PubMed PMC
Kanesaki Y, Shiwa Y, Tajima N, Suzuki M, Watanabe S, Sato N, Ikeuchi M and Yoshikawa H (2012) Identification of substrain‐specific mutations by massively parallel whole‐genome resequencing of Synechocystis sp. PCC 6803. DNA Res 19, 67–79. PubMed PMC
Trautmann D, Voss B, Wilde A, Al‐Babili S and Hess WR (2012) Microevolution in cyanobacteria: re‐sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 19, 435–448. PubMed PMC
Morris J, Crawford T, Jeffs A, Stockwell P, Eaton‐Rye J and Summerfield T (2014) Whole genome re‐sequencing of two ‘wild‐type’ strains of the model cyanobacterium Synechocystis sp. PCC 6803. N Z J Bot 52, 36–47.
Tichý M, Bečková M, Kopečná J, Noda J, Sobotka R and Komenda J (2016) Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front Plant Sci 7, 648. PubMed PMC
Mohamed A and Jansson C (1989) Influence of light on accumulation of photosynthesis‐specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol 13, 693–700. PubMed
Mäenpää P, Kallio T, Mulo P, Salih G, Aro E‐M, Tyystjärvi E and Jansson C (1993) Site‐specific mutations in the D1 polypeptide affect the susceptibility of Synechocystis 6803 cells to photoinhibition. Plant Mol Biol 22, 1–12. PubMed
Jansson C, Debus RJ, Osiewacz HD, Gurevitz M and McIntosh L (1987) Construction of an obligate photoheterotrophic mutant of the cyanobacterium Synechocystis 6803: Inactivation of the psbA gene family. Plant Physiol 85, 1021–1025. PubMed PMC
Ejima K, Kawaharada T, Inoue S, Kojima K and Nishiyama Y (2012) A change in the sensitivity of elongation factor G to oxidation protects photosystem II from photoinhibition in Synechocystis sp. PCC 6803. FEBS Lett 568, 778–783. PubMed
Andrews S (2010) Fast QC: a quality control tool for high throughput sequence data. http://bioinformatics.babraham.ac.uk/projects/fastqc.
Li H and Durbin R (2009) Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics 25, 1754–1760. PubMed PMC
Gunnelius L, Hakkila K, Kurkela J, Wada H, Tyystjärvi E and Tyystjärvi T (2014) The omega subunit of the RNA polymerase core directs transcription efficiency in cyanobacteria. Nucleic Acids Res 42, 4606–4614. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. PubMed PMC
Kallio MA, Tuimala JT, Hupponen T, Klemela P, Gentile M, Scheinin I, Koski M, Kaki J and Korpelainen EI (2011) Chipster: user‐friendly analysis software for microarray and other high‐throughput data. BMC Genomics 12, 507. PubMed PMC
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M and Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44, 6614–6624. PubMed PMC
Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR et al. (2018) RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 46, D851–D860. PubMed PMC
Li W, O'Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS et al. (2021) RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49, D1020–D1028. PubMed PMC
Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140, 315–322.
Pollari M, Rantamäki S, Huokko T, Kårlund‐Marttila A, Virjamo V, Tyystjärvi E and Tyystjärvi T (2011) Effects of deficiency and overdose of group 2 sigma factors in triple inactivation strains of Synechocystis sp. strain PCC 6803. J Bacteriol 193, 265–273. PubMed PMC
Schneider CA, Rasband WS and Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675. PubMed PMC
Bhaya D, Bianco NR, Bryant D and Grossman A (2000) Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Mol Microbiol 37, 941–951. PubMed
Yoshihara S, Geng X, Okamoto S, Yura K, Murata T, Go M, Ohmori M and Ikeuchi M (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 42, 63–73. PubMed
Linhartová M (2021) Function of the Type IV pili proteins in the cyanobacterium Synechocystis sp. PCC 6803. PhD Thesis, University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, The Czech Republic, 150 pp.
Oeser S, Wallner T, Schuergers N, Bučinská L, Sivabalasarma S, Bähre H, Albers S and Wilde A (2021) Minor pilins are involved in motility and natural competence in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 116, 743–765. PubMed
Chen GE, Hitchcock A, Mareš J, Gong Y, Tichý M, Pilný J, Kovárová L, Zdvihalová B, Xu J, Hunter CN et al. (2021) Evolution of Ycf54‐independent chlorophyll biosynthesis in cyanobacteria. Proc Natl Acad Sci U S A 118, e2024633118. PubMed PMC
Takatani N, Uenosono M, Hara Y, Yamakawa H, Fujita Y and Omata T (2022) Chlorophyll and pheophytin dephytylating enzymes required for efficient repair of PSII in Synechococcus elongatus PCC 7942. Plant Cell Physiol 63, 410–420. PubMed
Schmetterer GR (1990) Sequence conservation among the glucose transporter from the cyanobacterium Synechocystis sp. PCC 6803 and mammalian glucose transporters. Plant Mol Biol 14, 697–706. PubMed
Tyystjärvi T, Aro E‐M, Jansson C and Mäenpää P (1994) Changes of amino acid sequence in PEST‐like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Mol Biol 25, 517–526. PubMed
Laughlin TG, Bayne AN, Trempe J‐F, Savage DF and Davies KM (2019) Structure of the complex I‐like molecule NDH of oxygenic photosynthesis. Nature 566, 411–414. PubMed
Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T and Aro E‐M (2004) Expression and functional roles of the two distinct NDH‐1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell 16, 3326–3340. PubMed PMC
Baier A, Winkler W, Korte T, Lockau W and Karradt A (2014) Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by a Clp protease complex. J Biol Chem 289, 11755–11766. PubMed PMC
Tillich UM, Wolter N, Franke P, Dühring U and Frohme M (2014) Screening and genetic characterization of thermo‐tolerant Synechocystis sp. PCC6803 strains created by adaptive evolution. BMC Biotechnol 14, 66. PubMed PMC
Antal T, Kurkela J, Parikainen M, Kårlund A, Hakkila K, Tyystjärvi E and Tyystjärvi T (2016) Roles of group 2 sigma factors in acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to nitrogen deficiency. Plant Cell Physiol 57, 1309–1318. PubMed
Inoue N, Taira Y, Emi T, Yamane Y, Kashino Y, Koike H and Satoh K (2001) Acclimation to the growth temperature and the high‐temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol 42, 1140–1148. PubMed
Tuominen I, Pollari M, Tyystjärvi E and Tyystjärvi T (2006) The SigB σ factor mediates high‐temperature responses in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 580, 319–323. PubMed
Kamei A, Yuasa T, Orikawa K, Geng XX and Ikeuchi M (2001) A eukaryotic‐type protein kinase, SpkA, is required for normal motility of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183, 1505–1510. PubMed PMC
Panichkin VB, Arakawa‐Kobayashi S, Kanaseki T, Suzuki I, Los DA, Shestakov SV and Murata N (2006) Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick pili, and cell motility. J Bacteriol 188, 7696–7699. PubMed PMC
Trautner C and Vermaas WFJ (2013) The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 195, 5370–5380. PubMed PMC
Koskinen S, Hakkila K, Kurkela J, Tyystjärvi E and Tyystjärvi T (2018) Inactivation of group 2 σ factors upregulates production of transcriptional and translational machineries in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 8, 10305. PubMed PMC
Pathak D, Jin KS, Tandukar S, Kim JH, Kwon E and Kim DY (2020) Structural insights into the regulation of SigB activity by RsbV and RsbW. IUCrJ 7, 737–747. PubMed PMC
Huckauf J, Nomura C, Forchhammer K and Hagemann M (2000) Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors. Microbiology 146, 2877–2889. PubMed
Heilmann B, Hakkila K, Georg J, Tyystjarvi T, Hess WR, Axmann IM and Dienst D (2017) 6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803. BMC Microbiol 17, 229. PubMed PMC
Mulo P, Tyystjärvi T, Tyystjärvi E, Govindjee MP and Aro E‐M (1997) Mutagenesis of the D‐E loop of photosystem II reaction centre protein D1. Function and assembly of photosystem II. Plant Mol Biol 33, 1059–1071. PubMed
Pollari M, Gunnelius L, Tuominen I, Ruotsalainen V, Tyystjärvi E, Salminen T and Tyystjärvi T (2008) Characterization of single and double inactivation strains reveals new physiological roles for group 2 σ factors in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 147, 1994–2005. PubMed PMC
Koskinen S, Hakkila K, Gunnelius L, Kurkela J, Wada H and Tyystjärvi T (2016) In vivo recruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria. Mol Microbiol 99, 43–54. PubMed
Osanai T, Oikawa A, Azuma M, Tanaka K, Saito K, Hirai MY and Ikeuchi M (2011) Genetic engineering of group 2 σ factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem 286, 30962–30971. PubMed PMC
Satyshur KA, Worzalla GA, Meyer LS, Heiniger EK, Aukema KG, Misic AM and Forest KT (2007) Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15, 363–376. PubMed PMC
Kurkela J, Hakkila K, Antal T and Tyystjärvi T (2017) Acclimation to high CO2 requires the ω subunit of the RNA polymerase in Synechocystis . Plant Physiol 174, 172–184. PubMed PMC
Gunnelius L, Kurkela J, Hakkila K, Koskinen S, Parikainen M and Tyystjärvi T (2014) The ω subunit of RNA polymerase is essential for thermal acclimation of the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 9, e112599. PubMed PMC
RefSeq
CP094998