Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33649240

Grantová podpora
BB/M000265/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Chlorophylls (Chls) are essential cofactors for photosynthesis. One of the least understood steps of Chl biosynthesis is formation of the fifth (E) ring, where the red substrate, magnesium protoporphyrin IX monomethyl ester, is converted to the green product, 3,8-divinyl protochlorophyllide a In oxygenic phototrophs, this reaction is catalyzed by an oxygen-dependent cyclase, consisting of a catalytic subunit (AcsF/CycI) and an auxiliary protein, Ycf54. Deletion of Ycf54 impairs cyclase activity and results in severe Chl deficiency, but its exact role is not clear. Here, we used a Δycf54 mutant of the model cyanobacterium Synechocystis sp. PCC 6803 to generate suppressor mutations that restore normal levels of Chl. Sequencing Δycf54 revertants identified a single D219G amino acid substitution in CycI and frameshifts in slr1916, which encodes a putative esterase. Introduction of these mutations to the original Δycf54 mutant validated the suppressor effect, especially in combination. However, comprehensive analysis of the Δycf54 suppressor strains revealed that the D219G-substituted CycI is only partially active and its accumulation is misregulated, suggesting that Ycf54 controls both the level and activity of CycI. We also show that Slr1916 has Chl dephytylase activity in vitro and its inactivation up-regulates the entire Chl biosynthetic pathway, resulting in improved cyclase activity. Finally, large-scale bioinformatic analysis indicates that our laboratory evolution of Ycf54-independent CycI mimics natural evolution of AcsF in low-light-adapted ecotypes of the oceanic cyanobacteria Prochlorococcus, which lack Ycf54, providing insight into the evolutionary history of the cyclase enzyme.

Zobrazit více v PubMed

Bryant D. A., Hunter C. N., Warren M. J., Biosynthesis of the modified tetrapyrroles—the pigments of life. J. Biol. Chem. 295, 6888–6925 (2020). PubMed PMC

Chen G. E., et al. ., Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018). PubMed PMC

Porra R. J., et al. ., Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. Eur. J. Biochem. 239, 85–92 (1996). PubMed

Pinta V., Picaud M., Reiss-Husson F., Astier C., Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184, 746–753 (2002). PubMed PMC

Boldareva-Nuianzina E. N., Bláhová Z., Sobotka R., Koblížek M., Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl. Environ. Microbiol. 79, 2596–2604 (2013). PubMed PMC

Chen G. E., Canniffe D. P., Hunter C. N., Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 114, 6280–6285 (2017). PubMed PMC

Minamizaki K., Mizoguchi T., Goto T., Tamiaki H., Fujita Y., Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 283, 2684–2692 (2008). PubMed

Peter E., et al. ., Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim. Biophys. Acta 1787, 1458–1467 (2009). PubMed

Hollingshead S., et al. ., Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287, 27823–27833 (2012). PubMed PMC

Albus C. A., et al. ., LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco. Plant Physiol. 160, 1923–1939 (2012). PubMed PMC

Yu N., et al. ., CS3, a Ycf54 domain-containing protein, affects chlorophyll biosynthesis in rice (Oryza sativa L.). Plant Sci. 283, 11–22 (2019). PubMed

Hollingshead S., et al. ., Synthesis of chlorophyll-binding proteins in a fully segregated Δycf54 strain of the cyanobacterium Synechocystis PCC 6803. Front. Plant Sci. 7, 292 (2016). PubMed PMC

Strenkert D., et al. ., Genetically programmed changes in photosynthetic cofactor metabolism in copper-deficient Chlamydomonas. J. Biol. Chem. 291, 19118–19131 (2016). PubMed PMC

Chen G. E., Hunter C. N., Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54. Biochem. J. 477, 2313–2325 (2020). PubMed PMC

Castruita M., et al. ., Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23, 1273–1292 (2011). PubMed PMC

Tichý M., et al. ., Strain of Synechocystis PCC 6803 with aberrant assembly of photosystem II contains tandem duplication of a large chromosomal region. Front. Plant Sci. 7, 648 (2016). PubMed PMC

Tajima N., et al. ., Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S. DNA Res. 18, 393–399 (2011). PubMed PMC

Kopečná J., et al. ., Porphyrin binding to Gun4 protein, facilitated by a flexible loop, controls metabolite flow through the chlorophyll biosynthetic pathway. J. Biol. Chem. 290, 28477–28488 (2015). PubMed PMC

Vavilin D., Vermaas W., Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767, 920–929 (2007). PubMed

Kopečná J., et al. ., Lack of phosphatidylglycerol inhibits chlorophyll biosynthesis at multiple sites and limits chlorophyllide reutilization in Synechocystis sp. strain PCC 6803. Plant Physiol. 169, 1307–1317 (2015). PubMed PMC

Allison G., Gough K., Rogers L., Smith A., A suicide vector for allelic recombination involving the gene for glutamate 1-semialdehyde aminotransferase in the cyanobacterium Synechococcus PCC 7942. Mol. Gen. Genet. 255, 392–399 (1997). PubMed

Ollis D. L., et al. ., The α/β hydrolase fold. Protein Eng. 5, 197–211 (1992). PubMed

Carr P. D., Ollis D. L., α/β hydrolase fold: An update. Protein Pept. Lett. 16, 1137–1148 (2009). PubMed

Tsuchiya T., et al. ., Chlorophyllase as a serine hydrolase: Identification of a putative catalytic triad. Plant Cell Physiol. 44, 96–101 (2003). PubMed

Schelbert S., et al. ., Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767–785 (2009). PubMed PMC

Lin Y.-P., Wu M.-C., Charng Y. Y., Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28, 2974–2990 (2016). PubMed PMC

Chidgey J. W., et al. ., A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26, 1267–1279 (2014). PubMed PMC

Parks D. H., et al. ., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018). PubMed

Shih P. M., et al. ., Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. U.S.A. 110, 1053–1058 (2013). PubMed PMC

Aoki R., Takeda T., Omata T., Ihara K., Fujita Y., MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J. Biol. Chem. 287, 13500–13507 (2012). PubMed PMC

Hollingshead S., Bliss S., Baker P. J., Neil Hunter C., Conserved residues in Ycf54 are required for protochlorophyllide formation in Synechocystis sp. PCC 6803. Biochem. J. 474, 667–681 (2017). PubMed PMC

Herbst J., Girke A., Hajirezaei M. R., Hanke G., Grimm B., Potential roles of YCF54 and ferredoxin-NADPH reductase for magnesium protoporphyrin monomethylester cyclase. Plant J. 94, 485–496 (2018). PubMed

Kauss D., Bischof S., Steiner S., Apel K., Meskauskiene R., FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett. 586, 211–216 (2012). PubMed

Sobotka R., Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. Photosynth. Res. 119, 223–232 (2014). PubMed

Stuart D., et al. ., Aerobic barley Mg-protoporphyrin IX monomethyl ester cyclase is powered by electrons from ferredoxin. Plants 9, 1157 (2020). PubMed PMC

Bollivar D., Braumann I., Berendt K., Gough S. P., Hansson M., The Ycf54 protein is part of the membrane component of Mg-protoporphyrin IX monomethyl ester cyclase from barley (Hordeum vulgare L.). FEBS J. 281, 2377–2386 (2014). PubMed

Mochizuki N., Brusslan J. A., Larkin R., Nagatani A., Chory J., Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. U.S.A. 98, 2053–2058 (2001). PubMed PMC

Larkin R. M., Alonso J. M., Ecker J. R., Chory J., GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299, 902–906 (2003). PubMed

Sobotka R., et al. ., Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J. Biol. Chem. 283, 25794–25802 (2008). PubMed PMC

Davison P. A., et al. ., Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44, 7603–7612 (2005). PubMed

Verdecia M. A., et al. ., Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol. 3, e151 (2005). PubMed PMC

Formighieri C., Ceol M., Bonente G., Rochaix J. D., Bassi R., Retrograde signaling and photoprotection in a gun4 mutant of Chlamydomonas reinhardtii. Mol. Plant 5, 1242–1262 (2012). PubMed

Peter E., Grimm B., GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Mol. Plant 2, 1198–1210 (2009). PubMed

Bauer C. E., Setterdahl A., Wu J., Robinson B. R., “Regulation of gene expression in response to oxygen tension” in The Purple Phototrophic Bacteria, Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T., Eds. (Springer, 2009), pp. 707–725.

Partensky F., Garczarek L., Prochlorococcus: Advantages and limits of minimalism. Annu. Rev. Mar. Sci. 2, 305–331 (2010). PubMed

Sun Z., Blanchard J. L., Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. PLoS One 9, e88837 (2014). PubMed PMC

Rocap G., et al. ., Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003). PubMed

Jiang M., et al. ., Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: Identification and mutational analysis of the active site residues. Biochemistry 48, 6921–6931 (2009). PubMed

Gross J., et al. ., A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J. Biol. Chem. 281, 17189–17196 (2006). PubMed

Orcheski B., Parker R., Brown S., Pale green lethal disorder in apple (Malus) is caused by a mutation in the PHYLLO gene which is essential for phylloquinone (vitamin K1) biosynthesis. Tree Genet. Genomes 11, 131 (2015).

Johnson T. W., et al. ., Recruitment of a foreign quinone into the A(1) site of photosystem I. I. Genetic and physiological characterization of phylloquinone biosynthetic pathway mutants in Synechocystis sp. pcc 6803. J. Biol. Chem. 275, 8523–8530 (2000). PubMed

Wade Johnson T., et al. ., The menD and menE homologs code for 2-succinyl-6-hydroxyl-2,4-cyclohexadiene-1-carboxylate synthase and O-succinylbenzoic acid-CoA synthase in the phylloquinone biosynthetic pathway of Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1557, 67–76 (2003). PubMed

Widhalm J. R., van Oostende C., Furt F., Basset G. J. C., A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc. Natl. Acad. Sci. U.S.A. 106, 5599–5603 (2009). PubMed PMC

Ozaki H., Ikeuchi M., Ogawa T., Fukuzawa H., Sonoike K., Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: Identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol. 48, 451–458 (2007). PubMed

Yao L., et al. ., Pooled CRISPRi screening of the cyanobacterium Synechocystis sp PCC 6803 for enhanced industrial phenotypes. Nat. Commun. 11, 1666 (2020). PubMed PMC

Kopečná J., Komenda J., Bučinská L., Sobotka R., Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 160, 2239–2250 (2012). PubMed PMC

Pazderník M., Mareš J., Pilný J., Sobotka R., The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 294, 11131–11143 (2019). PubMed PMC

Nagashima K. V., Shimada K., Matsuura K., Shortcut of the photosynthetic electron transfer in a mutant lacking the reaction center-bound cytochrome subunit by gene disruption in a purple bacterium, Rubrivivax gelatinosus. FEBS Lett. 385, 209–213 (1996). PubMed

Wittig I., Karas M., Schägger H., High resolution clear native electrophoresis for isolation of membrane protein complexes. Mol. Cell. Proteomics 6, 1215–1225 (2007). PubMed

Dobáková M., Sobotka R., Tichý M., Komenda J., Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076–1086 (2009). PubMed PMC

Chen G. E., Canniffe D. P., Martin E. C., Hunter C. N., Absence of the cbb3 terminal oxidase reveals an active oxygen-dependent cyclase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides. J. Bacteriol. 198, 2056–2063 (2016). PubMed PMC

Pilný J., Kopečná J., Noda J., Sobotka R., Detection and quantification of heme and chlorophyll precursors using a high performance liquid chromatography (HPLC) system equipped with two fluorescence detectors. Bio Protoc. 5, e1390 (2015).

Tsuchiya T., et al. ., Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. U.S.A. 96, 15362–15367 (1999). PubMed PMC

Chaumeil P.-A., Mussig A. J., Hugenholtz P., Parks D. H., GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2019). PubMed PMC

Camacho C., et al. ., BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009). PubMed PMC

Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace