Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18625715
PubMed Central
PMC3258849
DOI
10.1074/jbc.m803787200
PII: S0021-9258(20)52492-7
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- chlorofyl chemie metabolismus MeSH
- chloroplasty metabolismus MeSH
- elektronová mikroskopie MeSH
- fenotyp MeSH
- fluorescenční spektrometrie metody MeSH
- fotosyntetické reakční centrum - proteinové komplexy chemie fyziologie MeSH
- fotosyntéza MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus fyziologie MeSH
- lyasy chemie MeSH
- mutace MeSH
- porfyriny chemie MeSH
- sinice metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- transmisní elektronová mikroskopie MeSH
- transportní proteiny genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorofyl MeSH
- fotosyntetické reakční centrum - proteinové komplexy MeSH
- fotosystém II - proteinový komplex MeSH
- intracelulární signální peptidy a proteiny MeSH
- lyasy MeSH
- magnesium chelatase MeSH Prohlížeč
- photosystem II, chlorophyll-binding protein, CP-47 MeSH Prohlížeč
- porfyriny MeSH
- světlosběrné proteinové komplexy MeSH
- transportní proteiny MeSH
Gun4 is a porphyrin-binding protein that activates magnesium chelatase, a multimeric enzyme catalyzing the first committed step in chlorophyll biosynthesis. In plants, GUN4 has been implicated in plastid-to-nucleus retrograde signaling processes that coordinate both photosystem II and photosystem I nuclear gene expression with chloroplast function. In this work we present the functional analysis of Gun4 from the cyanobacterium Synechocystis sp. PCC 6803. Affinity co-purification of the FLAG-tagged Gun4 with the ChlH subunit of the magnesium chelatase confirmed the association of Gun4 with the enzyme in cyanobacteria. Inactivation of the gun4 gene abolished photoautotrophic growth of the resulting gun4 mutant strain that exhibited a decreased activity of magnesium chelatase. Consequently, the cellular content of chlorophyll-binding proteins was highly inadequate, especially that of proteins of photosystem II. Immunoblot analyses, blue native polyacrylamide gel electrophoresis, and radiolabeling of the membrane protein complexes suggested that the availability of the photosystem II antenna protein CP47 is a limiting factor for the photosystem II assembly in the gun4 mutant.
Zobrazit více v PubMed
Papenbrock, J., and Grimm, B. (2001) Planta 213 667–681 PubMed
Vavilin, D. V., and Vermaas, W. F. (2002) Physiol. Plant 115 9–24 PubMed
Grossman, A. R., Lohr, M., and Im, C. S. (2004) Annu. Rev. Genet. 38 119–173 PubMed
Beale, S. I. (2005) Trends Plant Sci. 10 309–312 PubMed
Herrin, D. L., Battey, J. F., Greer, K., and Schmidt, G. W. (1992) J. Biol. Chem. 267 8260–8269 PubMed
Plumley, G. F., and Schmidt, G. W. (1995) Plant Cell 7 689–704 PubMed PMC
Brusslan, J. A., and Peterson, M. P. (2002) Photosynth. Res. 71 185–194 PubMed
Susek, R. E., Ausubel, F. M., and Chory, J. (1993) Cell 74 787–799 PubMed
Mochizuki, N., Brusslan, J. A., Larkin, R., Nagatani, A., and Chory, J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98 2053–2058 PubMed PMC
Larkin, R. M., Alonso, J. M., Ecker, J. R., and Chory, J. (2003) Science 299 902–906 PubMed
Davison, P. A., Schubert, H. L., Reid, J. D., Iorg, C. D., Heroux, A., Hill, C. P., and Hunter, C. N. (2005) Biochemistry 44 7603–7612 PubMed
Verdecia, M. A., Larkin, R. M., Ferrer, J. L., Riek, R., Chory, J., and Noel, J. P. (2005) PLoS Biol 3 e151. PubMed PMC
Wilde, A., Mikolajczyk, S., Alawady, A., Lokstein, H., and Grimm, B. (2004) FEBS Lett. 571 119–123 PubMed
Rippka, R., Desrulles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979) J. Gen. Microbiol. 11 419–436
Tous, C., Vega-Palas, M. A., and Vioque, A. (2001) J. Biol. Chem. 276 29059–29066 PubMed
Papenbrock, J., Mock, H. P., Kruse, E., and Grimm, B. (1999) Planta 208 264–273
Komenda, J., Reisinger, V., Muller, B. C., Dobakova, M., Granvogl, B., and Eichacker, L. A. (2004) J. Biol. Chem. 279 48620–48629 PubMed
Schägger, H., and von Jagow, G. (1991) Anal. Biochem. 199 223–231 PubMed
Komenda, J., Lupinkova, L., and Kopecky, J. (2002) Eur. J. Biochem. 269 610–619 PubMed
Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (1996) Plant J. 9 357–368 PubMed
Dühring, U., Irrgang, K. D., Lünser, K., Kehr, J., and Wilde, A. (2006) Biochim. Biophys. Acta 1757 3–11 PubMed
Porra, R. J., Thompson, W. A., and Kriedmann, P. E. (1989) Biochim. Biophys. Acta 975 384–394
Shen, G., and Vermaas, W. F. J. (1994) J. Biol. Chem. 269 13904–13910 PubMed
He, Q., Brune, D., Nieman, R., and Vermaas, W. (1998) Eur. J. Biochem. 253 161–172 PubMed
Eaton-Rye, J. J., and Vermaas, W. F. J. (1991) Plant Mol. Biol. 17 1165–1177 PubMed
Dobakova, M., Tichy, M., and Komenda, J. (2007) Plant Physiol. 145 1681–1691 PubMed PMC
Yang, H., Inokuchi, H., and Adler, J. (1995) Proc. Natl. Acad. Sci. U. S. A. 92 7332–7336 PubMed PMC
Sobotka, R., McLean, S., Zuberova, M., Hunter, C. N., and Tichy, M. (2008) J. Bacteriol. 190 2086–2095 PubMed PMC
Kada, S., Koike, H., Satoh, K., Hase, T., and Fujita, Y. (2003) Plant Mol. Biol. 51 225–235 PubMed
Vavilin, D., and Vermaas, W. (2007) Biochim. Biophys. Acta 1767 920–929 PubMed
He, Q., and Vermaas, W. (1998) Proc. Natl. Acad. Sci. U. S. A. 95 5830–5835 PubMed PMC
Sobotka, R., Komenda, J., Bumba, L., and Tichy, M. (2005) J. Biol. Chem. 280 31595–31602 PubMed
Chlorophyll biosynthesis under the control of arginine metabolism
Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria
Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria