Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23396335
PubMed Central
PMC3623192
DOI
10.1128/aem.00104-13
PII: AEM.00104-13
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny analýza chemie genetika MeSH
- fotosyntéza genetika MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- kyslík metabolismus MeSH
- oxygenasy analýza chemie genetika MeSH
- protein - isoformy analýza chemie genetika MeSH
- Proteobacteria enzymologie genetika metabolismus MeSH
- sinice enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- kyslík MeSH
- magnesium protoporphyrin monomethyl ester oxidative cyclase MeSH Prohlížeč
- oxygenasy MeSH
- protein - isoformy MeSH
Magnesium-protoporphyrin IX monomethylester cyclase is one of the key enzymes of the bacteriochlorophyll biosynthesis pathway. There exist two fundamentally different forms of this enzyme. The oxygen-dependent form, encoded by the gene acsF, catalyzes the formation of the bacteriochlorophyll fifth ring using oxygen, whereas the oxygen-independent form encoded by the gene bchE utilizes an oxygen atom extracted from water. The presence of acsF and bchE genes was surveyed in various phototrophic Proteobacteria using the available genomic data and newly designed degenerated primers. It was found that while the majority of purple nonsulfur bacteria contained both forms of the cyclase, the purple sulfur bacteria contained only the oxygen-independent form. All tested species of aerobic anoxygenic phototrophs contained acsF genes, but some of them also retained the bchE gene. In contrast to bchE phylogeny, the acsF phylogeny was in good agreement with 16S inferred phylogeny. Moreover, the survey of the genome data documented that the acsF gene occupies a conserved position inside the photosynthesis gene cluster, whereas the bchE location in the genome varied largely between the species. This suggests that the oxygen-dependent cyclase was recruited by purple phototrophic bacteria very early during their evolution. The primary sequence and immunochemical similarity with its cyanobacterial counterparts suggests that acsF may have been acquired by Proteobacteria via horizontal gene transfer from cyanobacteria. The acquisition of the gene allowed purple nonsulfur phototrophic bacteria to proliferate in the mildly oxygenated conditions of the Proterozoic era.
Zobrazit více v PubMed
Blankenship RE. 2010. Early evolution of photosynthesis. Plant Physiol. 154:434–438 PubMed PMC
Des Marais DJ. 2000. Evolution: when did photosynthesis emerge on Earth? Science 289:1703–1705 PubMed
Buick R. 2008. When did oxygenic photosynthesis evolve? Philos. Trans. R. Soc. B 363:2731–2743 PubMed PMC
Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361:903–915 PubMed PMC
Yurkov VV, Csotonyi JT. 2009. New light on aerobic anoxygenic phototrophs, p 31–55 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28 Springer-Verlag, New York, NY
Hauruseu D, Koblížek M. 2012. The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl. Environ. Microbiol. 78:7414–7419 PubMed PMC
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 PubMed
Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 9:3091–3099 PubMed
Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Béjà O. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol. 9:1464–1475 PubMed
Koblížek M. 2011. Role of photoheterotrophic bacteria in the marine carbon cycle, p 49–51 In Jiao N, Azam F, Sanders S. (ed), Microbial carbon pump in the ocean. Science/AAAS, Washington, DC
Waidner LA, Kirchman DL. 2007. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. Appl. Environ. Microbiol. 73:3936–3944 PubMed PMC
Mašín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10:1988–1996 PubMed
Medová H, Boldareva E, Hrouzek P, Borzenko S, Namsaraev Z, Gorlenko V, Namsaraev B, Koblížek M. 2011. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol. Ecol. 76:393–400 PubMed
Willows R, Kriegel M. 2009. Biosynthesis of bacteriochlorophylls in purple bacteria, p 57–79 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28 Springer-Verlag, New York, NY
Chew AGM, Bryant DA. 2007. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61:113–129 PubMed
Chereskin BM, Wong YS, Castelfranco PA. 1982. In vitro synthesis of the chlorophyll isocyclic ring: transformation of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester into Mg-2,4-divinylpheoporphyrin a5. Plant Physiol. 70:987–993 PubMed PMC
Gough SP, Petersen BO, Duus JØ. 2000. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc. Natl. Acad. Sci. U. S. A. 97:6908–6913 PubMed PMC
Walker CJ, Mansfield KE, Smith KM, Castelfranco PA. 1989. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem. J. 257:599–602 PubMed PMC
Bollivar DW, Beale SI. 1996. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase: characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol. 112:105–114 PubMed PMC
Pinta V, Picaud M, Reiss-Husson F, Astier C. 2002. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184:746–753 PubMed PMC
Ouchane S, Steunou A-S, Picaud M, Astier C. 2004. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria. A strategy adopted to bypass the repressive oxygen control system. J. Biol. Chem. 279:6385–6394 PubMed
Minamizaki KK, Mizoguchi TT, Goto TT, Tamiaki HH, Fujita YY. 2008. Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 283:2684–2692 PubMed
Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S. 2002. Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14:673–688 PubMed PMC
Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE. 2003. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc. Natl. Acad. Sci. U. S. A. 100:16119–16124 PubMed PMC
Tang K-H, Wen J, Li X, Blankenship RE. 2009. Role of the AcsF protein in Chloroflexus aurantiacus. J. Bacteriol. 191:3580–3587 PubMed PMC
Raimond J, Blankenship RE. 2004. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–220
Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM. 2007. The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda lake (Mono Lake, California, United States). Microbiology 76:82–92 PubMed
Boldareva EN, Akimov VN, Boichenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM. 2008. Rhodobaca barguzinensis sp. nov., a new alkalophylic purple nonsulfur bacteria isolated from soda lake on the Barguzin valley (Buryat Republic, Russia). Microbiology 77:206–218 PubMed
Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 180:327–338 PubMed
Oz A, Sabehi G, Koblížek M, Massana R, Béjà O. 2005. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl. Environ. Microbiol. 71:344–353 PubMed PMC
Rontani J-F, Christodoulous S, Koblížek M. 2005. GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108 PubMed
Koblížek M, Mlčoušková J, Kolber Z, Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch. Microbiol. 192:41–49 PubMed
Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V, Yan S, Jiao N. 2011. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6:e25050 doi:10.1371/journal.pone.0025050 PubMed DOI PMC
Peter E, Salinas A, Wallner T, Jeske D, Dienst D, Wilde A, Grimm B. 2009. Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim. Biophys. Acta 1787:1458–1467 PubMed
Battistuzzi FU, Feijao A, Hedges SB. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4:44. PubMed PMC
Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proc. Natl. Acad. Sci. U. S. A. 106:16925–16929 PubMed PMC
Bollivar DW. 2003. Intermediate steps in chlorophyll biosynthesis, p 49–70 In Kadish K, Smith KM, Guillard R. (ed), The porphyrin handbook. Academic Press, San Diego, CA
Phylum Gemmatimonadota and Its Role in the Environment
Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans
Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales
Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade