Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria

. 2013 Apr ; 79 (8) : 2596-604. [epub] 20130208

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23396335

Magnesium-protoporphyrin IX monomethylester cyclase is one of the key enzymes of the bacteriochlorophyll biosynthesis pathway. There exist two fundamentally different forms of this enzyme. The oxygen-dependent form, encoded by the gene acsF, catalyzes the formation of the bacteriochlorophyll fifth ring using oxygen, whereas the oxygen-independent form encoded by the gene bchE utilizes an oxygen atom extracted from water. The presence of acsF and bchE genes was surveyed in various phototrophic Proteobacteria using the available genomic data and newly designed degenerated primers. It was found that while the majority of purple nonsulfur bacteria contained both forms of the cyclase, the purple sulfur bacteria contained only the oxygen-independent form. All tested species of aerobic anoxygenic phototrophs contained acsF genes, but some of them also retained the bchE gene. In contrast to bchE phylogeny, the acsF phylogeny was in good agreement with 16S inferred phylogeny. Moreover, the survey of the genome data documented that the acsF gene occupies a conserved position inside the photosynthesis gene cluster, whereas the bchE location in the genome varied largely between the species. This suggests that the oxygen-dependent cyclase was recruited by purple phototrophic bacteria very early during their evolution. The primary sequence and immunochemical similarity with its cyanobacterial counterparts suggests that acsF may have been acquired by Proteobacteria via horizontal gene transfer from cyanobacteria. The acquisition of the gene allowed purple nonsulfur phototrophic bacteria to proliferate in the mildly oxygenated conditions of the Proterozoic era.

Zobrazit více v PubMed

Blankenship RE. 2010. Early evolution of photosynthesis. Plant Physiol. 154:434–438 PubMed PMC

Des Marais DJ. 2000. Evolution: when did photosynthesis emerge on Earth? Science 289:1703–1705 PubMed

Buick R. 2008. When did oxygenic photosynthesis evolve? Philos. Trans. R. Soc. B 363:2731–2743 PubMed PMC

Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361:903–915 PubMed PMC

Yurkov VV, Csotonyi JT. 2009. New light on aerobic anoxygenic phototrophs, p 31–55 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28 Springer-Verlag, New York, NY

Hauruseu D, Koblížek M. 2012. The influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl. Environ. Microbiol. 78:7414–7419 PubMed PMC

Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG. 2001. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 PubMed

Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P. 2007. Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 9:3091–3099 PubMed

Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Béjà O. 2007. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol. 9:1464–1475 PubMed

Koblížek M. 2011. Role of photoheterotrophic bacteria in the marine carbon cycle, p 49–51 In Jiao N, Azam F, Sanders S. (ed), Microbial carbon pump in the ocean. Science/AAAS, Washington, DC

Waidner LA, Kirchman DL. 2007. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. Appl. Environ. Microbiol. 73:3936–3944 PubMed PMC

Mašín M, Nedoma J, Pechar L, Koblížek M. 2008. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ. Microbiol. 10:1988–1996 PubMed

Medová H, Boldareva E, Hrouzek P, Borzenko S, Namsaraev Z, Gorlenko V, Namsaraev B, Koblížek M. 2011. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol. Ecol. 76:393–400 PubMed

Willows R, Kriegel M. 2009. Biosynthesis of bacteriochlorophylls in purple bacteria, p 57–79 In Hunter CN, Daldal F, Thurnauer MC, Beatty JT. (ed), The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28 Springer-Verlag, New York, NY

Chew AGM, Bryant DA. 2007. Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61:113–129 PubMed

Chereskin BM, Wong YS, Castelfranco PA. 1982. In vitro synthesis of the chlorophyll isocyclic ring: transformation of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester into Mg-2,4-divinylpheoporphyrin a5. Plant Physiol. 70:987–993 PubMed PMC

Gough SP, Petersen BO, Duus JØ. 2000. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc. Natl. Acad. Sci. U. S. A. 97:6908–6913 PubMed PMC

Walker CJ, Mansfield KE, Smith KM, Castelfranco PA. 1989. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem. J. 257:599–602 PubMed PMC

Bollivar DW, Beale SI. 1996. The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase: characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol. 112:105–114 PubMed PMC

Pinta V, Picaud M, Reiss-Husson F, Astier C. 2002. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J. Bacteriol. 184:746–753 PubMed PMC

Ouchane S, Steunou A-S, Picaud M, Astier C. 2004. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria. A strategy adopted to bypass the repressive oxygen control system. J. Biol. Chem. 279:6385–6394 PubMed

Minamizaki KK, Mizoguchi TT, Goto TT, Tamiaki HH, Fujita YY. 2008. Identification of two homologous genes, chlAI and chlAII, that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 283:2684–2692 PubMed

Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S. 2002. Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14:673–688 PubMed PMC

Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE. 2003. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc. Natl. Acad. Sci. U. S. A. 100:16119–16124 PubMed PMC

Tang K-H, Wen J, Li X, Blankenship RE. 2009. Role of the AcsF protein in Chloroflexus aurantiacus. J. Bacteriol. 191:3580–3587 PubMed PMC

Raimond J, Blankenship RE. 2004. Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2:199–220

Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM. 2007. The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda lake (Mono Lake, California, United States). Microbiology 76:82–92 PubMed

Boldareva EN, Akimov VN, Boichenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM. 2008. Rhodobaca barguzinensis sp. nov., a new alkalophylic purple nonsulfur bacteria isolated from soda lake on the Barguzin valley (Buryat Republic, Russia). Microbiology 77:206–218 PubMed

Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS. 2003. Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch. Microbiol. 180:327–338 PubMed

Oz A, Sabehi G, Koblížek M, Massana R, Béjà O. 2005. Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl. Environ. Microbiol. 71:344–353 PubMed PMC

Rontani J-F, Christodoulous S, Koblížek M. 2005. GC-MS structural characterization of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids 40:97–108 PubMed

Koblížek M, Mlčoušková J, Kolber Z, Kopecký J. 2010. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch. Microbiol. 192:41–49 PubMed

Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V, Yan S, Jiao N. 2011. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6:e25050 doi:10.1371/journal.pone.0025050 PubMed DOI PMC

Peter E, Salinas A, Wallner T, Jeske D, Dienst D, Wilde A, Grimm B. 2009. Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim. Biophys. Acta 1787:1458–1467 PubMed

Battistuzzi FU, Feijao A, Hedges SB. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4:44. PubMed PMC

Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH. 2009. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age. Proc. Natl. Acad. Sci. U. S. A. 106:16925–16929 PubMed PMC

Bollivar DW. 2003. Intermediate steps in chlorophyll biosynthesis, p 49–70 In Kadish K, Smith KM, Guillard R. (ed), The porphyrin handbook. Academic Press, San Diego, CA

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phylum Gemmatimonadota and Its Role in the Environment

. 2022 Jan 12 ; 10 (1) : . [epub] 20220112

Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria

Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes

. 2020 ; 11 () : 606612. [epub] 20210115

Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans

. 2018 Jan 01 ; 84 (1) : . [epub] 20171215

Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales

. 2017 Jul 01 ; 9 (7) : 1950-1962.

Novel acsF Gene Primers Revealed a Diverse Phototrophic Bacterial Population, Including Gemmatimonadetes, in Lake Taihu (China)

. 2016 Sep 15 ; 82 (18) : 5587-94. [epub] 20160830

Synthesis of Chlorophyll-Binding Proteins in a Fully Segregated Δycf54 Strain of the Cyanobacterium Synechocystis PCC 6803

. 2016 ; 7 () : 292. [epub] 20160317

Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade

. 2015 Jan ; 60 (1) : 37-43. [epub] 20140806

Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes

. 2014 May 27 ; 111 (21) : 7795-800. [epub] 20140512

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...