Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales

. 2017 Jul 01 ; 9 (7) : 1950-1962.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28810712

A characteristic feature of the order Rhodobacterales is the presence of a large number of photoautotrophic and photoheterotrophic species containing bacteriochlorophyll. Interestingly, these phototrophic species are phylogenetically mixed with chemotrophs. To better understand the origin of such variability, we sequenced the genomes of three closely related haloalkaliphilic species, differing in their phototrophic capacity and oxygen preference: the photoheterotrophic and facultatively anaerobic bacterium Rhodobaca barguzinensis, aerobic photoheterotroph Roseinatronobacter thiooxidans, and aerobic heterotrophic bacterium Natronohydrobacter thiooxidans. These three haloalcaliphilic species are phylogenetically related and share many common characteristics with the Rhodobacter species, forming together the Rhodobacter-Rhodobaca (RR) group. A comparative genomic analysis showed close homology of photosynthetic proteins and similarity in photosynthesis gene organization among the investigated phototrophic RR species. On the other hand, Rhodobaca barguzinensis and Roseinatronobacter thiooxidans lack an inorganic carbon fixation pathway and outer light-harvesting genes. This documents the reduction of their photosynthetic machinery towards a mostly photoheterotrophic lifestyle. Moreover, both phototrophic species contain 5-aminolevulinate synthase (encoded by the hemA gene) incorporated into their photosynthesis gene clusters, which seems to be a common feature of all aerobic anoxygenic phototrophic Alphaproteobacteria. Interestingly, the chrR-rpoE (sigma24) operon, which is part of singlet oxygen defense in phototrophic species, was found in the heterotrophic strain Natronohydrobacter thiooxidans. This suggests that this organism evolved from a photoheterotrophic ancestor through the loss of its photosynthesis genes. The overall evolution of phototrophy among the haloalkaliphilic members of the RR group is discussed.

Zobrazit více v PubMed

Androga DD, Özgür E, Eroglu I, Yücel M, Gündüz U.. 2012. Photofermentative hydrogen production in outdoor conditions. Croatia: INTECH Open Access Publisher.

Anthony JR, Newman JD, Donohue TJ.. 2004. Interactions between the Rhodobacter sphaeroides ECF sigma factor, σ E, and its anti-sigma factor, ChrR. J Mol Biol. 341(2):345–360. PubMed PMC

Auch AF, von Jan M, Klenk HP, Göker M.. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2(1):117–134. PubMed PMC

Aziz RK, et al.2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):1.. PubMed PMC

Berghoff BA, et al.2011. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter. Environ Microbiol 13(3):775–791. PubMed

Boldareva EN, et al.2006. The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline Soda Mono Lake (California, United States). Microbiology 76:82–92. PubMed

Boldareva EN, et al.2008. Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 77(2):206–218. PubMed

Boldareva EN, Bláhová Z, Sobotka R, Koblížek M.. 2013. Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol. 79(8):2596–2604. PubMed PMC

Boldareva EN, Gorlenko VM.. 2014. Roseibacula alcaliphilum gen. nov. sp. nov., a new alkaliphilic aerobic anoxygenic phototrophic bacterium from a meromictic soda lake Doroninskoe (East Siberia, Russia). Microbiology 83:381–390. PubMed

Bolt EL, et al.1999. Characterization of the Rhodobacter sphaeroides 5-aminolaevulinic acid synthase isoenzymes HemA and HemT, isolated from recombinant Escherichia coli. Eur J Biochem. 265(1):290–299. PubMed

Borland CF, Cogdell RJ, Land EJ, Truscott TG.. 1989. Bacteriochlorophyll a triplet state and its interactions with bacterial carotenoids and oxygen. J Photochem Photobiol B 3(2):237–245.

Brinkhoff T, Giebel HA, Simon M.. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 189(6):531–539. PubMed

Brocks JJ, et al.2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437(7060) 866–870. PubMed

Canfield DE, et al.2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321(5891):949–952. PubMed

Dailey HA, et al.2017. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol Mol Biol Rev. 81(1): e00048–16. PubMed PMC

Fanica-Gaignier M, Clement-Metral J.. 1973. 5-Aminolevulinic acid synthetase of Rhodopseudomonas spheroides Y. Eur J Biochem. 40(1): 13–18. PubMed

Fitch WM. 1970. Distinguishing homologous from analogous proteins. Syst Zool. 19:99–113. PubMed

Garrity GM, Bell JA, Lilburn T.. 2005. Order III. Rhodobacterales ord. nov In: Vos P, et al., editors. Bergey’s Manual® of Systematic Bacteriology. New York: Springer US; p. 270–323.

Grissa I, Vergnaud G, Pourcel C.. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35(Web Server):52–57. PubMed PMC

Keppen OI, Krasil’nikova EN, Lebedeva NV, Ivanovskii RN.. 2013. Comparative study of metabolism of the purple photosynthetic bacteria grown in the light and in the dark under anaerobic and aerobic conditions. Microbiology 82(5):547–553. PubMed

Koblížek M, Moulisová V, Muroňová M, Oborník M.. 2015. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol. 60(1):37–43. PubMed

Koblížek M, Zeng Y, Horák A, Oborník M.. 2013. Regressive evolution of photosynthesis in the Roseobacter clade. Adv Bot Res. 66:385–405.

Labrenz M, Lawson PA, Tindall BJ, Hirsch P.. 2009. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol. 59 (Pt 8):1935–1940. PubMed

Liotenberg S, et al.2008. Organization and expression of photosynthesis genes and operons in anoxygenic photosynthetic proteobacteria. Environ Microbiol. 10(9):2267–2276. PubMed

Luo H, Moran MA.. 2014. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 78(4):573–587. PubMed PMC

Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP.. 2013. When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol. 195(6):413–418. PubMed

Milford AD, Achenbach LA, Jung DO, Madigan MT.. 2000. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol. 174(1–2):18–27. PubMed

Moran MA, et al.2007. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 73(14):4559–4569. PubMed PMC

Petersen J, Frank O, Göker M, Pradella S.. 2013. Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 97(7):2805–2815. PubMed

Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE.. 2002. Whole-genome analysis of photosynthetic prokaryotes. Science 298(5598):1616–1620. PubMed

Simon M, et al.2017. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11(6):1483–1499. PubMed PMC

Sorokin DY, Tourova TP, Kuenen JG.. 2000a. A new facultatively autotrophic hydrogen- and sulphur-oxidizing bacterium from alkaline environment. Extremophiles 4(4):237–245. PubMed

Sorokin DY, Tourova TP, Kuznetsov BB, Bryantseva IA, Gorlenko VM.. 2000b. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll-a-containing bacteria from a soda lake. Microbiology 69(1):89–97. PubMed

Stadnichuk IN, et al.2009. Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll a-containing bacterium Roseinatronobacter thiooxidans. Microbiology 78(1):7–15. PubMed

Talavera G, Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577. PubMed

Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I.. 2011. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J. 5(12):1957–1968. PubMed PMC

Vollmers J, et al.2013. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8(5):e63422. PubMed PMC

Wagner-Döbler I, Biebl H.. 2006. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 60:255–280. PubMed

Wang Y, Coleman-Derr D, Chen G, Gu YQ.. 2015. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 43(W1):78–84. PubMed PMC

Willows RD, Kriegel AM.. 2009. Biosynthesis of bacteriochlorophylls in purple bacteria In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Netherlands: Springer; p. 57–79.

Yu Y, Yan SL, Li HR, Zhang XH.. 2011. Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from Antarctic sandy intertidal sediment. Int J Syst Evol Microbiol. 61(Pt 9):2173–2179. PubMed

Zeng Y, Feng F, Medová H, Dean J, Koblížek M.. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA. 111(21):7795–7800. PubMed PMC

Zheng Q, et al.2011. Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS One 6(9):e25050.. PubMed PMC

Zsebo KM, Hearst JE.. 1984. Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37(3):937–947. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters

. 2024 Mar 27 ; 12 (1) : 65. [epub] 20240327

A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer

. 2024 Mar 19 ; 9 (3) : e0131123. [epub] 20240220

Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake

. 2023 Feb ; 15 (1) : 60-71. [epub] 20221212

Simultaneous Presence of Bacteriochlorophyll and Xanthorhodopsin Genes in a Freshwater Bacterium

. 2020 Dec 22 ; 5 (6) : . [epub] 20201222

A comparative look at structural variation among RC-LH1 'Core' complexes present in anoxygenic phototrophic bacteria

. 2020 Aug ; 145 (2) : 83-96. [epub] 20200519

Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake

. 2019 Aug 22 ; 17 (1) : 69. [epub] 20190822

Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes

. 2019 Aug 01 ; 11 (8) : 2208-2217.

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes

. 2018 Nov ; 22 (6) : 839-849. [epub] 20180718

Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae

. 2018 Aug ; 12 (8) : 1994-2010. [epub] 20180524

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace