Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-28778X
Grantová Agentura České Republiky
19-28778X
Grantová Agentura České Republiky
19-28778X
Grantová Agentura České Republiky
19-28778X
Grantová Agentura České Republiky
19-28778X
Grantová Agentura České Republiky
2021/03/Y/NZ8/00076
Polska Akademia Nauk
PubMed
38539229
PubMed Central
PMC10976687
DOI
10.1186/s40168-024-01786-0
PII: 10.1186/s40168-024-01786-0
Knihovny.cz E-zdroje
- Klíčová slova
- pufM gene, Aerobic anoxygenic phototrophs, Aquatic microbial ecology, Freshwaters, Long-term sampling, Microbial seasonal succession, PEG model, Photoheterotrophs,
- MeSH
- aerobní bakterie genetika metabolismus MeSH
- Bacteria genetika MeSH
- biomasa MeSH
- fototrofní procesy * MeSH
- fytoplankton genetika MeSH
- jezera * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic bacteria that supply their metabolism with light energy harvested by bacteriochlorophyll-a-containing reaction centers. Despite their substantial contribution to bacterial biomass, microbial food webs, and carbon cycle, their phenology in freshwater lakes remains unknown. Hence, we investigated seasonal variations of AAP abundance and community composition biweekly across 3 years in a temperate, meso-oligotrophic freshwater lake. RESULTS: AAP bacteria displayed a clear seasonal trend with a spring maximum following the bloom of phytoplankton and a secondary maximum in autumn. As the AAP bacteria represent a highly diverse assemblage of species, we followed their seasonal succession using the amplicon sequencing of the pufM marker gene. To enhance the accuracy of the taxonomic assignment, we developed new pufM primers that generate longer amplicons and compiled the currently largest database of pufM genes, comprising 3633 reference sequences spanning all phyla known to contain AAP species. With this novel resource, we demonstrated that the majority of the species appeared during specific phases of the seasonal cycle, with less than 2% of AAP species detected during the whole year. AAP community presented an indigenous freshwater nature characterized by high resilience and heterogenic adaptations to varying conditions of the freshwater environment. CONCLUSIONS: Our findings highlight the substantial contribution of AAP bacteria to the carbon flow and ecological dynamics of lakes and unveil a recurrent and dynamic seasonal succession of the AAP community. By integrating this information with the indicator of primary production (Chlorophyll-a) and existing ecological models, we show that AAP bacteria play a pivotal role in the recycling of dissolved organic matter released during spring phytoplankton bloom. We suggest a potential role of AAP bacteria within the context of the PEG model and their consideration in further ecological models.
Associated Tissue Bank Faculty of Medicine Pavol Jozef Safarik University in Košice Košice Slovakia
Institute of Biology and Biochemistry Potsdam University Potsdam Germany
Zobrazit více v PubMed
Sommer U, Gliwicz ZM, Lampert W, Duncan A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch für Hydrobiol. 1986;106:433–471. doi: 10.1127/archiv-hydrobiol/106/1986/433. DOI
Sommer U, Adrian R, De Senerpont DL, Elser JJ, Gaedke U, Ibelings B, et al. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst. 2012;43:429–448. doi: 10.1146/annurev-ecolsys-110411-160251. DOI
Kavagutti VS, Bulzu P-A, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome. 2023;11:15. doi: 10.1186/s40168-022-01451-4. PubMed DOI PMC
Zeder M, Peter S, Shabarova T, Pernthaler J. A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol. 2009;11:2676–2686. doi: 10.1111/j.1462-2920.2009.01994.x. PubMed DOI
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, et al. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. Microbiome. 2023;11:112. doi: 10.1186/s40168-023-01522-0. PubMed DOI PMC
Reavie ED, Barbiero RP, Allinger LE, Warren GJ. Phytoplankton trends in the Great Lakes, 2001–2011. J Great Lakes Res. 2014;40:618–639. doi: 10.1016/j.jglr.2014.04.013. DOI
Pomeroy L, leB. Williams P, Azam F, Hobbie J. The Microbial Loop. Oceanography 2007; 20: 28–33.
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. 2015;39:854–870. doi: 10.1093/femsre/fuv032. PubMed DOI
Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environ Microbiol. 2018;20:724–733. doi: 10.1111/1462-2920.14003. PubMed DOI
Koblížek M, Dachev M, Bína D, Nupur, Piwosz K, Kaftan D. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobiol B Biol. 2020;213:112085. doi: 10.1016/j.jphotobiol.2020.112085. PubMed DOI
Mašín M, Nedoma J, Pechar L, Koblížek M. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol. 2008;10:1988–1996. doi: 10.1111/j.1462-2920.2008.01615.x. PubMed DOI
Čuperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol. 2013;79:6439–6446. doi: 10.1128/AEM.01526-13. PubMed DOI PMC
Fauteux L, Cottrell MT, Kirchman DL, Borrego CM, Garcia-Chaves MC, del Giorgio PA. Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in northern lakes. PLoS One. 2015;10:1–17. doi: 10.1371/journal.pone.0124035. PubMed DOI PMC
Garcia-Chaves MC, Cottrell MT, Kirchman DL, Ruiz-González C, Del Giorgio PA. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME J. 2016;10:1579–1588. doi: 10.1038/ismej.2015.242. PubMed DOI PMC
Ferrera I, Sarmento H, Priscu JC, Chiuchiolo A, González JM, Grossart H-P. Diversity and distribution of freshwater aerobic anoxygenic phototrophic bacteria across a wide latitudinal gradient. Front Microbiol. 2017;8:175. doi: 10.3389/fmicb.2017.00175. PubMed DOI PMC
Ruiz-González C, Garcia-Chaves MC, Ferrera I, Niño-García JP, Giorgio PA. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Mol Ecol. 2020;29:1267–1283. doi: 10.1111/mec.15404. PubMed DOI
Piwosz K, Villena-Alemany C, Mujakić I. Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. ISME J. 2022;16:1046–1054. doi: 10.1038/s41396-021-01142-2. PubMed DOI PMC
Villena-Alemany C, Mujakić I, Porcal P, Koblížek M, Piwosz K. Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake. Environ Microbiol Rep. 2023;15:60–71. doi: 10.1111/1758-2229.13131. PubMed DOI PMC
Kolářová E, Medová H, Piwosz K, Koblížek M. Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov. Folia Microbiol (Praha) 2019;64:705–710. doi: 10.1007/s12223-019-00735-x. PubMed DOI
Kuzyk SB, Ma X, Yurkov V. Seasonal dynamics of Lake Winnipeg’s microbial communities reveal aerobic anoxygenic phototrophic populations coincide with sunlight availability. Microorganisms. 2022;10:1690. doi: 10.3390/microorganisms10091690. PubMed DOI PMC
Ferrera I, Sánchez O, Kolářová E, Koblížek M, Gasol JM. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J. 2017;11:2391–2393. doi: 10.1038/ismej.2017.79. PubMed DOI PMC
Tomaš AV, Šantić D, Šolić M, Ordulj M, Jozić S, Šestanović S, et al. Dynamics of Aerobic Anoxygenic Phototrophs along the trophic gradient in the central Adriatic Sea. Deep Sea Res Part II Top Stud Oceanogr. 2019;164:112–121. doi: 10.1016/j.dsr2.2019.06.001. DOI
Szabó-Tugyi N, Vörös L, V.-Balogh K, Botta-Dukát Z, Bernát G, Schmera D, et al. Aerobic anoxygenic phototrophs are highly abundant in hypertrophic and polyhumic waters. FEMS Microbiol Ecol. 2019;95:fiz104. doi: 10.1093/femsec/fiz104. PubMed DOI
Shi L, Cai Y, Shi X, Zhang M, Zeng Q, Kong F, et al. Community structure of aerobic anoxygenic phototrophic bacteria in algae- and macrophyte-dominated areas in Taihu Lake. China J Oceanol Limnol. 2022;40:1855–1867. doi: 10.1007/s00343-022-1348-2. DOI
Kopejtka K, Lin Y, Jakubovičová M, Koblížek M, Tomasch J. Clustered core- and pan-genome content on rhodobacteraceae chromosomes. Genome Biol Evol. 2019;11:2208–2217. doi: 10.1093/gbe/evz138. PubMed DOI PMC
Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microbiol. 2018;84:6–17. doi: 10.1128/AEM.02116-17. PubMed DOI PMC
Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol. 2005;71:8958–8962. doi: 10.1128/AEM.71.12.8958-8962.2005. PubMed DOI PMC
Salka I, Čuperová Z, Mašín M, Koblížek M, Grossart H-P. Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol. 2011;13:2865–2875. doi: 10.1111/j.1462-2920.2011.02562.x. PubMed DOI
Tang K, Jia L, Yuan B, Yang S, Li H, Meng J, et al. Aerobic anoxygenic phototrophic bacteria promote the development of biological soil crusts. Front Microbiol. 2018;9:2715. doi: 10.3389/fmicb.2018.02715. PubMed DOI PMC
Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–1987. doi: 10.1038/s41396-019-0401-4. PubMed DOI PMC
Fecskeová LK, Piwosz K, Hanusová M, Nedoma J, Znachor P, Koblížek M. Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep. 2019;9:18766. doi: 10.1038/s41598-019-55210-x. PubMed DOI PMC
Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature. 2002;415:630–633. doi: 10.1038/415630a. PubMed DOI
Cottrell MT, Mannino A, Kirchman DL. Aerobic anoxygenic phototrophic bacteria in the mid-atlantic bight and the north pacific gyre. Appl Environ Microbiol. 2006;72:557–564. doi: 10.1128/AEM.72.1.557-564.2006. PubMed DOI PMC
Mašín M, Zdun A, Ston-Egiert J, Nausch M, Labrenz M, Moulisová V, et al. Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat Microb Ecol. 2006;45:247–254. doi: 10.3354/ame045247. DOI
Shabarova T, Salcher MM, Porcal P, Znachor P, Nedoma J, Grossart H-P, et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol. 2021;6:479–488. doi: 10.1038/s41564-020-00852-1. PubMed DOI
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36. doi: 10.1016/S0003-2670(00)88444-5. DOI
Kopáček J, Hejzlar J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem. 1993;53:173–183. doi: 10.1080/03067319308045987. DOI
Procházková L. Bestimmung der Nitrate im Wasser. Fresenius’ Zeitschrift für Anal Chemie. 1959;167:254–260. doi: 10.1007/BF00458786. DOI
Kopáček J, Procházková L. Semi-micro determination of ammonia in water by the rubazoic acid method. Int J Environ Anal Chem. 1993;53:243–248. doi: 10.1080/03067319308045993. DOI
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–D794. doi: 10.1093/nar/gkab776. PubMed DOI PMC
Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–813. doi: 10.1038/s41564-018-0176-9. PubMed DOI PMC
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome. 2019;7:135. doi: 10.1186/s40168-019-0752-0. PubMed DOI PMC
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509. doi: 10.1038/s41587-020-0718-6. PubMed DOI PMC
Chiriac MC, Bulzu PA, Andrei AS, Okazaki Y, Nakano SI, Haber M, et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome. 2022;10:84. doi: 10.1186/s40168-022-01274-3. PubMed DOI PMC
Buck M, Garcia SL, Fernandez L, Martin G, Martinez-Rodriguez GA, Saarenheimo J, et al. Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds. Sci Data. 2021;8:131. doi: 10.1038/s41597-021-00910-1. PubMed DOI PMC
Moncadas LS, Shabarova T, Kavagutti VS, Bulzu P, Chiriac M, Park S, Mukherjee I, Ghai R, Andrei A. Rickettsiales’ deep evolutionary history sheds light on the emergence of intracellular lifestyles. bioRxiv. 2023. 10.1101/2023.01.31.526412.
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–5316. doi: 10.1093/bioinformatics/btac672. PubMed DOI PMC
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2252. doi: 10.1093/bioinformatics/btz859. PubMed DOI PMC
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:427–432. doi: 10.1093/nar/gky995. PubMed DOI PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–368. doi: 10.1038/s41592-021-01101-x. PubMed DOI PMC
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–5491. doi: 10.1128/AEM.66.12.5488-5491.2000. PubMed DOI PMC
Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial Populations Active in Metabolism of C 1 Compounds in the Sediment of Lake Washington, a Freshwater Lake. Appl Environ Microbiol. 2005;71:6885–6899. doi: 10.1128/AEM.71.11.6885-6899.2005. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–2643. doi: 10.1038/ismej.2017.119. PubMed DOI PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50:D20–D26. doi: 10.1093/nar/gkab1112. PubMed DOI PMC
Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–369. doi: 10.1093/sysbio/syy054. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Czech L, Barbera P, Stamatakis A. Genesis and Gappa: Processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–3265. doi: 10.1093/bioinformatics/btaa070. PubMed DOI PMC
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–1445. doi: 10.1111/1755-0998.12401. PubMed DOI
Cedric Ginestet, ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series A: Statistics in Society. 2011;174(1):245–246. 10.1111/j.1467-985X.2010.00676_9.x.
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006;1695:1–9.
Grolemund G, Wickham H. Dates and times made easy with lubridate. J Stat Softw. 2011;40:1–25. doi: 10.18637/jss.v040.i03. DOI
Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224. doi: 10.3389/fmicb.2017.02224. PubMed DOI PMC
Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM. A field guide for the compositional analysis of any-omics data. Gigascience. 2019;8:giz107. doi: 10.1093/gigascience/giz107. PubMed DOI PMC
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514. doi: 10.1038/s41467-020-17041-7. PubMed DOI PMC
Costea PI, Zeller G, Sunagawa S, Bork P. A fair comparison. Nat Methods. 2014;11:359–359. doi: 10.1038/nmeth.2897. PubMed DOI
Anderson MJ, Legendre P. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul. 1999;62:271–303. doi: 10.1080/00949659908811936. DOI
Legendre P, Andersson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:512–512. doi: 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2. DOI
Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E, Plymouth, UK. 2008;1–214.
Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687. doi: 10.1371/journal.pcbi.1002687. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornňák K, et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–1492. doi: 10.4319/lo.2014.59.5.1477. DOI
Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, et al. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol. 2007;9:1464–1475. doi: 10.1111/j.1462-2920.2007.01265.x. PubMed DOI
Lehours A-C, Enault F, Boeuf D, Jeanthon C. Biogeographic patterns of aerobic anoxygenic phototrophic bacteria reveal an ecological consistency of phylogenetic clades in different oceanic biomes. Sci Rep. 2018;8:4105. doi: 10.1038/s41598-018-22413-7. PubMed DOI PMC
Gazulla CR, Cabello AM, Sánchez P, Gasol JM, Sánchez O, Ferrera I. A metagenomic and amplicon sequencing combined approach reveals the best primers to study marine aerobic anoxygenic phototrophs. Microb Ecol. 2023;86:2161–72. doi: 10.1007/s00248-023-02220-y. PubMed DOI PMC
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, et al. Diversity of aerobic anoxygenic phototrophs and rhodopsin-containing bacteria in the surface microlayer, water column and epilithic biofilms of Lake Baikal. Microorganisms. 2021;9:842. doi: 10.3390/microorganisms9040842. PubMed DOI PMC
Kopejtka K, Tomasch J, Zeng Y, Tichý M, Sorokin DY, Koblížek M. Genomic Analysis of the Evolution of Phototrophy among Haloalkaliphilic Rhodobacterales. Genome Biol Evol. 2017;9:1950–1962. doi: 10.1093/gbe/evx141. PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC
Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of phototrophy in the Chloroflexi Phylum driven by horizontal gene transfer. Front Microbiol. 2018;9:260. doi: 10.3389/fmicb.2018.00260. PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–1927. doi: 10.1093/bioinformatics/btz848. PubMed DOI PMC
Nagashima S, Nagashima KVP. Comparison of Photosynthesis Gene Clusters Retrieved from Total Genome Sequences of Purple Bacteria. In Advances in Botanical Research, Volume 66. Amsterdam: Elsevier; 2013. p. 151–178. ISBN 9780123979230.
Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis is widely distributed among proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Front Microbiol. 2018;8:2679. doi: 10.3389/fmicb.2017.02679. PubMed DOI PMC
Jeong J, Yun K, Mun S, Chung W-H, Choi S-Y, Nam Y, et al. The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Sci Rep. 2021;11:1727. doi: 10.1038/s41598-020-80826-9. PubMed DOI PMC
Huber P, Metz S, Unrein F, Mayora G, Sarmento H, Devercelli M. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J. 2020;14:2951–2966. doi: 10.1038/s41396-020-0723-2. PubMed DOI PMC
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett. 2014;41:6396–6402. doi: 10.1002/2014GL060641. DOI
Koblížek M, Stoń-Egiert J, Sagan S, Kolber ZS. Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microbiol Ecol. 2005;51:353–361. doi: 10.1016/j.femsec.2004.09.016. PubMed DOI
Garcia-Chaves M, Cottrell M, Kirchman D, Derry A, Bogard M, del Giorgio P. Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquat Microb Ecol. 2015;76:71–83. doi: 10.3354/ame01770. DOI
Cepáková Z, Hrouzek P, Žišková E, Nuyanzina-Boldareva E, Šorf M, Kozlíková-Zapomělová E, et al. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ Microbiol. 2016;18:5063–5071. doi: 10.1111/1462-2920.13475. PubMed DOI
Fecskeová LK, Piwosz K, Šantić D, Šestanović S, Tomaš AV, Hanusová M, et al. Lineage-specific growth curves document large differences in response of individual groups of marine bacteria to the top-down and bottom-up controls. MSystems. 2021;6:e00934–21. doi: 10.1128/mSystems.00934-21. PubMed DOI PMC
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol. 2014;16:2953–2965. doi: 10.1111/1462-2920.12278. PubMed DOI
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, et al. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun. 2023;14:6450. doi: 10.1038/s41467-023-42193-7. PubMed DOI PMC
Global freshwater distribution of Telonemia protists