Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31273387
PubMed Central
PMC6699656
DOI
10.1093/gbe/evz138
PII: 5527758
Knihovny.cz E-zdroje
- Klíčová slova
- Rhodobacteraceae, genome architecture, genome evolution, origin of replication,
- MeSH
- bakteriální chromozomy genetika MeSH
- bakteriální proteiny genetika MeSH
- fylogeneze * MeSH
- genom bakteriální * MeSH
- regulace genové exprese u bakterií MeSH
- replikace DNA MeSH
- Rhodobacteraceae genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate, and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular, Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.
Department of Molecular Bacteriology Helmholtz Centre for Infection Research Braunschweig Germany
Department of Physics School of Science Tianjin University China
Faculty of Information Technology Czech Technical University Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Arndt D. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44(W1):W16–W21. PubMed PMC
Bertelli C, et al. 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45(W1):W30–W35. PubMed PMC
Blattner FR, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462. PubMed
Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J.. 2018. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 12(8):1994–2010. PubMed PMC
Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM.. 2013. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res. 41(12):6058–6071. PubMed PMC
Couturier E, Rocha EP.. 2006. Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes. Mol Microbiol. 59(5):1506–1518. PubMed
Dagan T, Martin W.. 2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A. 104(3):870–875. PubMed PMC
Daubin V, Perriere G.. 2003. G+ C3 structuring along the genome: a common feature in prokaryotes. Mol Biol Evol. 20(4):471–483. PubMed
Eisen JA, Heidelberg JF, White O, Salzberg SL.. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1(6):research0011.1.. PubMed PMC
Flynn KM, Vohr SH, Hatcher PJ, Cooper VS.. 2010. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol Evol. 2:859–869. PubMed PMC
Freese HM, et al. 2017. Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter. Gen Biol Evol. 9(12):3297–3311. PubMed PMC
Gao F, Zhang CT.. 2008. Ori-Finder: a web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinformatics 9(1):79.. PubMed PMC
Hsiao W, Wan I, Jones SJ, Brinkman FS.. 2003. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420. PubMed
Jun S, Si F, Pugatch R, Scott M.. 2018. Fundamental principles in bacterial physiology – history, recent progress, and the future with focus on cell size control: a review. Rep Prog Phys. 81(5):056601.. PubMed PMC
Kalhöfer D, et al. 2011. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 12(1):324. PubMed PMC
Khedkar S, Seshasayee ASN.. 2016. Comparative genomics of interreplichore translocations in bacteria: a measure of chromosome topology? G3 (Bethesda) 6(6):1597–1606. PubMed PMC
Koblížek M, Moulisová V, Muroňová M, Oborník M.. 2015. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha). 60(1):37–43. PubMed
Kopejtka K, et al. 2017. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol. 9(7):1950–1962. PubMed PMC
Kopejtka K, et al. 2018. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes. Extremophiles 22(6):839–849. PubMed
Krause DJ, Didelot X, Cadillo-Quiroz H, Whitaker RJ.. 2014. Recombination shapes genome architecture in an organism from the archaeal domain. Genome Biol Evol. 6(1):170–178. PubMed PMC
Kunst F, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. PubMed
Langille MG, Hsiao WW, Brinkman FS.. 2008. Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9(1):329.. PubMed PMC
Lawrence JG, Ochman H.. 1998. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 95(16):9413–9417. PubMed PMC
Le SQ, Gascuel O.. 2008. An improved general amino acid replacement matrix. Mol Biol Evol. 25(7):1307–1320. PubMed
Lechner M, et al. 2011. Proteinortho: detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics 12:124.. PubMed PMC
Luo H, Quan CL, Peng C, Gao F.. 2018. Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief Bioinform. Available from: 10.1093/bib/bbx174. PubMed DOI
Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S.. 2004. Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res. 32(13):3781–3791. PubMed PMC
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R.. 2005. The microbial pan-genome. Curr Opin Genet Dev. 15(6):589–594. PubMed
Oliveira PH, Touchon M, Cury J, Rocha EP.. 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun. 8(1):841.. PubMed PMC
Petersen J, Frank O, Göker M, Pradella S.. 2013. Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 97(7):2805–2815. PubMed
Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC.. 2014. The family Rhodobacteraceae. The Prokaryotes. Berlin, Heidelberg: Springer, p. 439–512.
Quast C, et al. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596. PubMed PMC
Rocha EP. 2004. The replication-related organization of bacterial genomes. Microbiology 150(6):1609–1627. PubMed
Rocha EP. 2008. The organization of the bacterial genome. Annu Rev Genet. 42:211–233. PubMed
Sangar V, Blankenberg DJ, Altman N, Lesk AM. 2007. Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinformatics 8(1):294. PubMed PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. PubMed
Shakya M, Soucy SM, Zhaxybayeva O. 2017. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus Evol. 3(2):vex036. PubMed PMC
Simon M, et al. 2017. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11(6):1483.. PubMed PMC
Sobetzko P, Travers A, Muskhelishvili G.. 2012. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A. 109(2):E42–E50. PubMed PMC
Talavera G, Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577. PubMed
Tettelin H, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci U S A. 102(39):13950–13955. PubMed PMC
Thole S, et al. 2012. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 6(12):2229.. PubMed PMC
Touchon M, Rocha EP.. 2016. Coevolution of the organization and structure of prokaryotic genomes. Cold Spring Harb Perspect Biol. 8(1):a018168.. PubMed PMC
Vernikos GS, Parkhill J.. 2006. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18):2196–2203. PubMed
Vollmers J, et al. 2013. Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8(5):e63422.. PubMed PMC
Waack S, et al. 2006. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7(1):142.. PubMed PMC