Clustered Core- and Pan-Genome Content on Rhodobacteraceae Chromosomes

. 2019 Aug 01 ; 11 (8) : 2208-2217.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31273387

In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate, and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular, Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.

Zobrazit více v PubMed

Arndt D. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44(W1):W16–W21. PubMed PMC

Bertelli C, et al. 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 45(W1):W30–W35. PubMed PMC

Blattner FR, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462. PubMed

Brinkmann H, Göker M, Koblížek M, Wagner-Döbler I, Petersen J.. 2018. Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME J. 12(8):1994–2010. PubMed PMC

Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM.. 2013. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res. 41(12):6058–6071. PubMed PMC

Couturier E, Rocha EP.. 2006. Replication‐associated gene dosage effects shape the genomes of fast‐growing bacteria but only for transcription and translation genes. Mol Microbiol. 59(5):1506–1518. PubMed

Dagan T, Martin W.. 2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A. 104(3):870–875. PubMed PMC

Daubin V, Perriere G.. 2003. G+ C3 structuring along the genome: a common feature in prokaryotes. Mol Biol Evol. 20(4):471–483. PubMed

Eisen JA, Heidelberg JF, White O, Salzberg SL.. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1(6):research0011.1.. PubMed PMC

Flynn KM, Vohr SH, Hatcher PJ, Cooper VS.. 2010. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol Evol. 2:859–869. PubMed PMC

Freese HM, et al. 2017. Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter. Gen Biol Evol. 9(12):3297–3311. PubMed PMC

Gao F, Zhang CT.. 2008. Ori-Finder: a web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinformatics 9(1):79.. PubMed PMC

Hsiao W, Wan I, Jones SJ, Brinkman FS.. 2003. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420. PubMed

Jun S, Si F, Pugatch R, Scott M.. 2018. Fundamental principles in bacterial physiology – history, recent progress, and the future with focus on cell size control: a review. Rep Prog Phys. 81(5):056601.. PubMed PMC

Kalhöfer D, et al. 2011. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 12(1):324. PubMed PMC

Khedkar S, Seshasayee ASN.. 2016. Comparative genomics of interreplichore translocations in bacteria: a measure of chromosome topology? G3 (Bethesda) 6(6):1597–1606. PubMed PMC

Koblížek M, Moulisová V, Muroňová M, Oborník M.. 2015. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha). 60(1):37–43. PubMed

Kopejtka K, et al. 2017. Genomic analysis of the evolution of phototrophy among haloalkaliphilic Rhodobacterales. Genome Biol Evol. 9(7):1950–1962. PubMed PMC

Kopejtka K, et al. 2018. The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes. Extremophiles 22(6):839–849. PubMed

Krause DJ, Didelot X, Cadillo-Quiroz H, Whitaker RJ.. 2014. Recombination shapes genome architecture in an organism from the archaeal domain. Genome Biol Evol. 6(1):170–178. PubMed PMC

Kunst F, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256. PubMed

Langille MG, Hsiao WW, Brinkman FS.. 2008. Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9(1):329.. PubMed PMC

Lawrence JG, Ochman H.. 1998. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 95(16):9413–9417. PubMed PMC

Le SQ, Gascuel O.. 2008. An improved general amino acid replacement matrix. Mol Biol Evol. 25(7):1307–1320. PubMed

Lechner M, et al. 2011. Proteinortho: detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics 12:124.. PubMed PMC

Luo H, Quan CL, Peng C, Gao F.. 2018. Recent development of Ori-Finder system and DoriC database for microbial replication origins. Brief Bioinform. Available from: 10.1093/bib/bbx174. PubMed DOI

Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S.. 2004. Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res. 32(13):3781–3791. PubMed PMC

Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R.. 2005. The microbial pan-genome. Curr Opin Genet Dev. 15(6):589–594. PubMed

Oliveira PH, Touchon M, Cury J, Rocha EP.. 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun. 8(1):841.. PubMed PMC

Petersen J, Frank O, Göker M, Pradella S.. 2013. Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 97(7):2805–2815. PubMed

Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC.. 2014. The family Rhodobacteraceae. The Prokaryotes. Berlin, Heidelberg: Springer, p. 439–512.

Quast C, et al. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596. PubMed PMC

Rocha EP. 2004. The replication-related organization of bacterial genomes. Microbiology 150(6):1609–1627. PubMed

Rocha EP. 2008. The organization of the bacterial genome. Annu Rev Genet. 42:211–233. PubMed

Sangar V, Blankenberg DJ, Altman N, Lesk AM. 2007. Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinformatics 8(1):294. PubMed PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. PubMed

Shakya M, Soucy SM, Zhaxybayeva O. 2017. Insights into origin and evolution of α-proteobacterial gene transfer agents. Virus Evol. 3(2):vex036. PubMed PMC

Simon M, et al. 2017. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11(6):1483.. PubMed PMC

Sobetzko P, Travers A, Muskhelishvili G.. 2012. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A. 109(2):E42–E50. PubMed PMC

Talavera G, Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577. PubMed

Tettelin H, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci U S A. 102(39):13950–13955. PubMed PMC

Thole S, et al. 2012. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 6(12):2229.. PubMed PMC

Touchon M, Rocha EP.. 2016. Coevolution of the organization and structure of prokaryotic genomes. Cold Spring Harb Perspect Biol. 8(1):a018168.. PubMed PMC

Vernikos GS, Parkhill J.. 2006. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22(18):2196–2203. PubMed

Vollmers J, et al. 2013. Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 8(5):e63422.. PubMed PMC

Waack S, et al. 2006. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7(1):142.. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

On the evolution of chromosomal regions with high gene strand bias in bacteria

. 2024 Jun 12 ; 15 (6) : e0060224. [epub] 20240516

Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters

. 2024 Mar 27 ; 12 (1) : 65. [epub] 20240327

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace