On the evolution of chromosomal regions with high gene strand bias in bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GX19-28778X
Grantová Agentura České Republiky (GAČR)
PubMed
38752745
PubMed Central
PMC11237797
DOI
10.1128/mbio.00602-24
Knihovny.cz E-zdroje
- Klíčová slova
- Gemmatimonadota, gene order, genome evolution, genome organization, strand bias,
- MeSH
- Bacteria genetika klasifikace MeSH
- bakteriální chromozomy * genetika MeSH
- DNA bakterií genetika MeSH
- genom bakteriální MeSH
- molekulární evoluce * MeSH
- přenos genů horizontální MeSH
- replikace DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
On circular bacterial chromosomes, the majority of genes are coded on the leading strand. This gene strand bias (GSB) ranges from up to 85% in some Bacillota to a little more than 50% in other phyla. The factors determining the extent of the strand bias remain to be found. Here, we report that species in the phylum Gemmatimonadota share a unique chromosome architecture, distinct from neighboring phyla: in a conserved 600-kb region around the terminus of replication, almost all genes were located on the leading strands, while on the remaining part of the chromosome, the strand preference was more balanced. The high strand bias (HSB) region harbors the rRNA clusters, core, and highly expressed genes. Selective pressure for reduction of collisions with DNA replication to minimize detrimental mutations can explain the conservation of essential genes in this region. Repetitive and mobile elements are underrepresented, suggesting reduced recombination frequency by structural isolation from other parts of the chromosome. We propose that the HSB region forms a distinct chromosomal domain. Gemmatimonadota chromosomes evolved mainly by expansion through horizontal gene transfer and duplications outside of the ancient high strand bias region. In support of our hypothesis, we could further identify two Spiroplasma strains on a similar evolutionary path.IMPORTANCEOn bacterial chromosomes, a preferred location of genes on the leading strand has evolved to reduce conflicts between replication and transcription. Despite a vast body of research, the question why bacteria show large differences in their gene strand bias is still not solved. The discovery of "hybrid" chromosomes in different phyla, including Gemmatimonadota, in which a conserved high strand bias is found exclusively in a region at ter, points toward a role of nucleoid structure, additional to replication, in the evolution of strand preferences. A fine-grained structural analysis of the ever-increasing number of available bacterial genomes could help to better understand the forces that shape the sequential and spatial organization of the cell's information content.
Zobrazit více v PubMed
McLean MJ, Wolfe KH, Devine KM. 1998. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol 47:691–696. doi:10.1007/pl00006428 PubMed DOI
Rocha EPC. 2004. The replication-related organization of bacterial genomes. Microbiology (Reading) 150:1609–1627. doi:10.1099/mic.0.26974-0 PubMed DOI
Slager J, Veening J-W. 2016. Hard-wired control of bacterial processes by chromosomal gene location. Trends Microbiol 24:788–800. doi:10.1016/j.tim.2016.06.003 PubMed DOI PMC
Couturier E, Rocha EPC. 2006. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 59:1506–1518. doi:10.1111/j.1365-2958.2006.05046.x PubMed DOI
Lang KS, Merrikh H. 2018. The clash of macromolecular titans: replication-transcription conflicts in bacteria. Annu Rev Microbiol 72:71–88. doi:10.1146/annurev-micro-090817-062514 PubMed DOI PMC
Szczepanik D, Mackiewicz P, Kowalczuk M, Gierlik A, Nowicka A, Dudek MR, Cebrat S. 2001. Evolution rates of genes on leading and lagging DNA strands. J Mol Evol 52:426–433. doi:10.1007/s002390010172 PubMed DOI
Pomerantz RT, O’Donnell M. 2010. What happens when replication and transcription complexes collide? Cell Cycle 9:2537–2543. doi:10.4161/cc.9.13.12122 PubMed DOI PMC
Chen X, Zhang J. 2013. Why are genes encoded on the lagging strand of the bacterial genome? Genome Biol Evol 5:2436–2439. doi:10.1093/gbe/evt193 PubMed DOI PMC
Gao N, Lu G, Lercher MJ, Chen W-H. 2017. Selection for energy efficiency drives strand-biased gene distribution in prokaryotes. Sci Rep 7:10572. doi:10.1038/s41598-017-11159-3 PubMed DOI PMC
Merrikh CN, Merrikh H. 2018. Gene inversion potentiates bacterial evolvability and virulence. Nat Commun 9:4662. doi:10.1038/s41467-018-07110-3 PubMed DOI PMC
Schroeder JW, Sankar TS, Wang JD, Simmons LA. 2020. The roles of replication-transcription conflict in mutagenesis and evolution of genome organization. PLOS Genet 16:e1008987. doi:10.1371/journal.pgen.1008987 PubMed DOI PMC
Liu H, Zhang J. 2022. Testing the adaptive hypothesis of lagging-strand encoding in bacterial genomes. Nat Commun 13:2628. doi:10.1038/s41467-022-30000-8 PubMed DOI PMC
Merrikh H, Merrikh C. 2022. Reply to: Testing the adaptive hypothesis of lagging-strand encoding in bacterial genomes. Nat Commun 13:2627. doi:10.1038/s41467-022-30014-2 PubMed DOI PMC
Rocha EPC, Danchin A. 2001. Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol 18:1789–1799. doi:10.1093/oxfordjournals.molbev.a003966 PubMed DOI
Wu H, Qu H, Wan N, Zhang Z, Hu S, Yu J. 2012. Strand-biased gene distribution in bacteria is related to both horizontal gene transfer and strand-biased nucleotide composition. Genom Proteom Bioinform 10:186–196. doi:10.1016/j.gpb.2012.08.001 PubMed DOI PMC
Saha SK, Goswami A, Dutta C. 2014. Association of purine asymmetry, strand-biased gene distribution and PolC within firmicutes and beyond: a new appraisal. BMC Genomics 15:430. doi:10.1186/1471-2164-15-430 PubMed DOI PMC
Merrikh H. 2017. Spatial and temporal control of evolution through replication–transcription conflicts. Trends Microbiol 25:515–521. doi:10.1016/j.tim.2017.01.008 PubMed DOI PMC
Dervyn E, Suski C, Daniel R, Bruand C, Chapuis J, Errington J, Jannière L, Ehrlich SD. 2001. Two essential DNA polymerases at the bacterial replication fork. Science 294:1716–1719. doi:10.1126/science.1066351 PubMed DOI
Rocha EPC. 2002. Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes? Trends Microbiol 10:393–395. doi:10.1016/S0966-842X(02)02420-4 PubMed DOI
Atre M, Joshi B, Babu J, Sawant S, Sharma S, Sankar TS. 2024. Origin, evolution, and maintenance of gene-strand bias in bacteria. Nucleic Acids Res:gkae155. doi:10.1093/nar/gkae155 PubMed DOI PMC
Mujakić I, Piwosz K, Koblížek M. 2022. Phylum Gemmatimonadota and its role in the environment. Microorganisms 10:151. doi:10.3390/microorganisms10010151 PubMed DOI PMC
Zheng X, Dai X, Zhu Y, Yang J, Jiang H, Dong H, Huang L. 2022. (Meta)genomic analysis reveals diverse energy conservation strategies employed by globally distributed Gemmatimonadota mSystems 7:e0022822. doi:10.1128/msystems.00228-22 PubMed DOI PMC
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. 2023. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 11:e0111223. doi:10.1128/spectrum.01112-23 PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800. doi:10.1073/pnas.1400295111 PubMed DOI PMC
de Carvalho MO, Ferreira HB. 2007. Quantitative determination of gene strand bias in prokaryotic genomes. Genomics 90:733–740. doi:10.1016/j.ygeno.2007.07.010 PubMed DOI
Gupta RS. 2004. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143. doi:10.1080/10408410490435133 PubMed DOI
Rocha EPC. 2003. DNA repeats lead to the accelerated loss of gene order in bacteria. Trends Genet. 19:600–603. doi:10.1016/j.tig.2003.09.011 PubMed DOI
Shivaramu S, Tomasch J, Kopejtka KNupurSaini MK, Bokhari SNH, Küpper H, Koblížek M. 2022. The influence of calcium on the growth, morphology and gene regulation in Gemmatimonas Phototrophica. Microorganisms 11:27. doi:10.3390/microorganisms11010027 PubMed DOI PMC
Timinskas K, Balvočiūtė M, Timinskas A, Venclovas Č. 2014. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes. Nucleic Acids Res. 42:1393–1413. doi:10.1093/nar/gkt900 PubMed DOI PMC
Murray GGR, Charlesworth J, Miller EL, Casey MJ, Lloyd CT, Gottschalk M, Tucker AWD, Welch JJ, Weinert LA. 2021. Genome reduction is associated with bacterial pathogenicity across different scales of temporal and ecological divergence. Mol Biol Evol 38:1570–1579. doi:10.1093/molbev/msaa323 PubMed DOI PMC
Tsai Y-M, Chang A, Kuo C-H. 2018. Horizontal gene acquisitions contributed to genome expansion in insect-symbiotic Spiroplasma clarkii. Genome Biol Evol 10:1526–1532. doi:10.1093/gbe/evy113 PubMed DOI PMC
Gralka M, Pollak S, Cordero OX. 2023. Genome content predicts the carbon catabolic preferences of heterotrophic bacteria. Nat Microbiol 8:1799–1808. doi:10.1038/s41564-023-01458-z PubMed DOI
Oliveira PH, Touchon M, Cury J, Rocha EPC. 2017. The chromosomal organization of horizontal gene transfer in bacteria. Nat Commun 8:841. doi:10.1038/s41467-017-00808-w PubMed DOI PMC
Hu X-P, Lercher MJ. 2023. Nearly half of all bacterial gene families are biased toward specific chromosomal positions. bioRxiv. doi:10.1101/2023.10.18.562889 DOI
Tomasch J, Koppenhöfer S, Lang AS. 2021. Connection between chromosomal location and function of CtrA phosphorelay genes in alphaproteobacteria. Front Microbiol 12:662907. doi:10.3389/fmicb.2021.662907 PubMed DOI PMC
Koppenhöfer S, Lang AS. 2022. Patterns of abundance, chromosomal localization, and domain organization among c-di-GMP-metabolizing genes revealed by comparative genomics of five alphaproteobacterial orders. BMC Genomics 23:834. doi:10.1186/s12864-022-09072-9 PubMed DOI PMC
Kopejtka K, Lin Y, Jakubovičová M, Koblížek M, Tomasch J. 2019. Clustered core- and pan-genome content on Rhodobacteraceae chromosomes. Genome Biol Evol 11:2208–2217. doi:10.1093/gbe/evz138 PubMed DOI PMC
Zhang J, Yang J-R. 2015. Determinants of the rate of protein sequence evolution. Nat Rev Genet 16:409–420. doi:10.1038/nrg3950 PubMed DOI PMC
Mao X, Zhang H, Yin Y, Xu Y. 2012. The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces. Nucleic Acids Res 40:8210–8218. doi:10.1093/nar/gks605 PubMed DOI PMC
Koppenhöfer S, Tomasch J, Lang AS. 2022. Shared properties of gene transfer agent and core genes revealed by comparative genomics of alphaproteobacteria. Microb Genom 8:000890. doi:10.1099/mgen.0.000890 PubMed DOI PMC
Darling AE, Miklós I, Ragan MA. 2008. Dynamics of genome rearrangement in bacterial populations. PLOS Genet 4:e1000128. doi:10.1371/journal.pgen.1000128 PubMed DOI PMC
Rocha EPC, Danchin A. 2003. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31:6570–6577. doi:10.1093/nar/gkg859 PubMed DOI PMC
Vieira-Silva S, Rocha EPC. 2010. The systemic imprint of growth and its uses in ecological (meta)genomics. PLOS Genet 6:e1000808. doi:10.1371/journal.pgen.1000808 PubMed DOI PMC
Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L. 2000. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148. doi:10.1126/science.290.5499.2144 PubMed DOI
Alpers K, Vatareck E, Gröbe L, Müsken M, Scharfe M, Häussler S, Tomasch J. 2023. Transcriptome dynamics of Pseudomonas aeruginosa during transition from overlapping to non-overlapping cell cycles. mSystems 8:e0113022. doi:10.1128/msystems.01130-22 PubMed DOI PMC
Fang G, Rocha EPC, Danchin A. 2008. Persistence drives gene clustering in bacterial genomes. BMC Genomics 9:4. doi:10.1186/1471-2164-9-4 PubMed DOI PMC
Dagan T, Martin W. 2007. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A 104:870–875. doi:10.1073/pnas.0606318104 PubMed DOI PMC
Umbarger MA, Toro E, Wright MA, Porreca GJ, Baù D, Hong S-H, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH, Shapiro L, Dekker J, Church GM. 2011. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell 44:252–264. doi:10.1016/j.molcel.2011.09.010 PubMed DOI PMC
Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM. 2013. Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 41:6058–6071. doi:10.1093/nar/gkt325 PubMed DOI PMC
Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B, Mozziconacci J, Murray H, Koszul R, Nollmann M. 2015. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:588–602. doi:10.1016/j.molcel.2015.07.020 PubMed DOI
Bignaud A, Cockram C, Borde C, Groseille J, Allemand E, Thierry A, Marbouty M, Mozziconacci J, Espéli O, Koszul R. 2024. Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes. Nat Struct Mol Biol 31:489–497. doi:10.1038/s41594-023-01178-2 PubMed DOI PMC
Valens M, Penaud S, Rossignol M, Cornet F, Boccard F. 2004. Macrodomain organization of the Escherichia coli chromosome. EMBO J 23:4330–4341. doi:10.1038/sj.emboj.7600434 PubMed DOI PMC
Garmendia E, Brandis G, Guy L, Cao S, Hughes D. 2021. Chromosomal location determines the rate of intrachromosomal homologous recombination in Salmonella. mBio 12:e0115121. doi:10.1128/mBio.01151-21 PubMed DOI PMC
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. 2022. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50:D785–D794. doi:10.1093/nar/gkab776 PubMed DOI PMC
Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. 2019. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res 47:4442–4448. doi:10.1093/nar/gkz246 PubMed DOI PMC
Dong M-J, Luo H, Gao F. 2022. Ori-Finder 2022: a comprehensive web server for prediction and analysis of bacterial replication origins. Genom Proteom Bioinform 20:1207–1213. doi:10.1016/j.gpb.2022.10.002 PubMed DOI PMC
Yin T, Cook D, Lawrence M. 2012. ggbio: an R package for extending the grammar of graphics for genomic data. Genome Biol. 13:R77. doi:10.1186/gb-2012-13-8-r77 PubMed DOI PMC
Ameijeiras-Alonso J, Crujeiras RM, Rodríguez-Casal A. 2019. Mode testing, critical bandwidth and excess mass. TEST 28:900–919. doi:10.1007/s11749-018-0611-5 DOI
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. 2011. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12:124. doi:10.1186/1471-2105-12-124 PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi:10.1101/gr.186072.114 PubMed DOI PMC
Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLOS ONE 5:e11147. doi:10.1371/journal.pone.0011147 PubMed DOI PMC
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34:D32–D36. doi:10.1093/nar/gkj014 PubMed DOI PMC
Achaz G, Boyer F, Rocha EPC, Viari A, Coissac E. 2007. Repseek, a tool to retrieve approximate repeats from large DNA sequences. Bioinformatics 23:119–121. doi:10.1093/bioinformatics/btl519 PubMed DOI
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi:10.1093/nar/gkw387 PubMed DOI PMC
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 PubMed DOI PMC
Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 56:2.4.1–2.4.5. doi:10.1002/0471142727.mb0204s56 PubMed DOI
Neffe L, Abendroth L, Bautsch W, Häussler S, Tomasch J. 2022. High plasmidome diversity of extended-spectrum beta-lactam-resistant Escherichia coli isolates collected during one year in one community hospital. Genomics 114:110368. doi:10.1016/j.ygeno.2022.110368 PubMed DOI