The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica

. 2022 Dec 22 ; 11 (1) : . [epub] 20221222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36677319
Odkazy

PubMed 36677319
PubMed Central PMC9862903
DOI 10.3390/microorganisms11010027
PII: microorganisms11010027
Knihovny.cz E-zdroje

The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.

Zobrazit více v PubMed

Kamagata Y. Bergey’s Manual® of Systematic Bacteriology. 2nd ed. Springer; New York, NY, USA: 2010. Phylum XXI. Gemmatimonadetes Zhang, Sekiguchi, Hanada, Hugenholtz, Kim, Kamagata and Nakamura 2003, 1161VP; pp. 781–784.1161VP.

Hanada S., Sekiguchi Y. The phylum Gemmatimonadetes. Prokaryotes. 2014;11:677–681.

Zeng Y., Baumbach J., Barbosa E.G.V., Azevedo V., Zhang C., Koblížek M. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 2016;8:139–149. doi: 10.1111/1758-2229.12363. PubMed DOI

Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 2003;53:1155–1163. doi: 10.1099/ijs.0.02520-0. PubMed DOI

DeBruyn J.M., Fawaz M.N., Peacock A.D., Dunlap J.R., Nixon L.T., Cooper K.E., Radosevich M. Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J. Gen. Appl. Microbiol. 2013;59:305–312. doi: 10.2323/jgam.59.305. PubMed DOI

Pascual J., Garcia-Lopez M., Bills G.F., Genilloud O. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int. J. Syst. Evol. Microbiol. 2016;66:1976–1985. doi: 10.1099/ijsem.0.000974. PubMed DOI

Pascual J., Foesel B.U., Geppert A., Huber K.J., Boedeker C., Luckner M., Wanner G., Overmann J. Roseisolibacter agri gen. nov., sp. nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Int. J. Syst. Evol. Microbiol. 2018;68:1028–1036. doi: 10.1099/ijsem.0.002619. PubMed DOI

Zeng Y., Feng F., Medová H., Dean J., Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. USA. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC

Zeng Y., Selyanin V., Lukeš M., Dean J., Kaftan D., Feng F., Koblížek M. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int. J. Syst. Evol. Microbiol. 2015;65:2410–2419. doi: 10.1099/ijs.0.000272. PubMed DOI

Koblížek M., Dachev M., Bína D., Piwosz K., Kaftan D. Utilization of light energy in phototrophic Gemmatimonadetes. J. Photochem. Photobiol. B, Biol. 2020;213:112085. doi: 10.1016/j.jphotobiol.2020.112085. PubMed DOI

Dachev M., Bína D., Sobotka R., Moravcová L., Gardian Z., Kaftan D., Šlouf V., Fuciman M., Polívka T., Koblížek M. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol. 2017;15:e2003943. doi: 10.1371/journal.pbio.2003943. PubMed DOI PMC

Qian P., Gardiner A.T., Šímová I., Naydenova K., Croll T.I., Jackson P.J., Nupur, Kloz M., Čubáková P., Kuzma M., et al. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem. Sci. Adv. 2022;8:eabk3139. doi: 10.1126/sciadv.abk3139. PubMed DOI PMC

Zeng Y., Koblížek M. Modern Topics in the Phototrophic Prokaryotes. Springer; New York, NY, USA: 2017. Phototrophic Gemmatimonadetes: A new “purple” branch on the bacterial tree of life; pp. 163–192.

Piwosz K., Shabarova T., Tomasch J., Šimek K., Kopejtka K., Kahl S., Pieper D.H., Koblížek M. Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS) ISME J. 2018;12:2640–2654. doi: 10.1038/s41396-018-0213-y. PubMed DOI PMC

Mujakić I., Piwosz K., Koblížek M. Phylum Gemmatimonadota and its role in the environment. Microorganisms. 2022;10:151. doi: 10.3390/microorganisms10010151. PubMed DOI PMC

Zeng Y., Wu N., Madsen A.M., Chen X., Gardiner A.T., Koblížek M. Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes. Front. Microbiol. 2021;11:606612. doi: 10.3389/fmicb.2020.606612. PubMed DOI PMC

Kirchman D.L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 2016;8:285–309. doi: 10.1146/annurev-marine-122414-033938. PubMed DOI

Pinto F.L., Thapper A., Sontheim W., Lindblad P. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol. Biol. 2009;10:79. doi: 10.1186/1471-2199-10-79. PubMed DOI PMC

Kopejtka K., Tomasch J., Zeng Y., Selyanin V., Dachev M., Piwosz K., Tichý M., Bína D., Gardian Z., Bunk B., et al. Simultaneous presence of bacteriochlorophyll and xanthorhodopsin genes in a freshwater bacterium. mSystems. 2020;5:e01044-20. doi: 10.1128/mSystems.01044-20. PubMed DOI PMC

Shishkin A.A., Giannoukos G., Kucukural A., Ciulla D., Busby M., Surka C., Chen J., Bhattacharyya R.P., Rudy R.F., Patel M.M., et al. Simultaneous generation of many RNA-seq libraries in a single reaction. Nat. Methods. 2015;12:323–325. doi: 10.1038/nmeth.3313. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general-purpose read summarization program. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Robinson M.D., McCarthy D.J., Smyth G.K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Andresen E., Lyubenova L., Hubáček T., Bokhari S.N.H., Matoušková Š., Mijovilovich A., Rohovec J., Küpper H. Chronic exposure of soybean plants to nanomolar cadmium reveals specific additional high-affinity targets of Cd toxicity. J. Exp. Bot. 2020;71:1628–1644. doi: 10.1093/jxb/erz530. PubMed DOI PMC

Weyhenmeyer G.A., Hartmann J., Hessen D.O., Kopáček J., Hejzlar J., Jacquet S., Hamilton S.K., Verburg P., Leach T.H., Schmid M., et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 2019;9:10450. doi: 10.1038/s41598-019-46838-w. PubMed DOI PMC

Nupur Kuzma M., Hájek J., Hrouzek P., Gardiner A.T., Lukeš M., Moos M., Šimek P., Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci. Rep. 2021;11:15964. doi: 10.1038/s41598-021-95254-6. PubMed DOI PMC

Campbell A.K. Intracellular Calcium, Its Universal Role as Regulator. Wiley; New York, NY, USA: 1983.

Dominguez D.C. Calcium signalling in bacteria. Mol. Microbiol. 2004;54:291–297. doi: 10.1111/j.1365-2958.2004.04276.x. PubMed DOI

Permyakov E.A., Kretsinger R.H. Cell signaling, beyond cytosolic calcium in eukaryotes. J. Inorg. Biochem. 2009;103:77–86. doi: 10.1016/j.jinorgbio.2008.09.006. PubMed DOI

Hepler P.K. The cytoskeleton and its regulation by calcium and protons. Plant Physiol. 2016;170:3–22. doi: 10.1104/pp.15.01506. PubMed DOI PMC

Zampese E., Pizzo P. Intracellular organelles in the saga of Ca2+ homeostasis: Different molecules for different purposes? Cell. Mol. Life Sci. 2012;69:1077–1104. doi: 10.1007/s00018-011-0845-9. PubMed DOI PMC

Brini M., Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 2011;3:a004168. doi: 10.1101/cshperspect.a004168. PubMed DOI PMC

Ostermeier C., Harrenga A., Ermler U., Michel H. Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment. Proc. Natl. Acad. Sci. USA. 1998;94:10547–10553. doi: 10.1073/pnas.94.20.10547. PubMed DOI PMC

Ludwig B., Bender E., Arnold S., Hüttemann M., Lee I., Kadenbach B. Cytochrome c oxidase and the regulation of oxidative phosphorylation. ChemBioChem. 2001;2:392–403. doi: 10.1002/1439-7633(20010601)2:6<392::AID-CBIC392>3.0.CO;2-N. PubMed DOI

Svensson-Ek M., Abramson J., Larsson G., Törnroth S., Brzezinski P., Iwata S. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J. Mol. Biol. 2002;321:329–339. doi: 10.1016/S0022-2836(02)00619-8. PubMed DOI

Trombe M.C., Rieux V., Baille F. Mutations which alter the kinetics of calcium transport alter the regulation of competence in Streptococcus pneumoniae. J. Bacteriol. 1994;176:1992–1996. doi: 10.1128/jb.176.7.1992-1996.1994. PubMed DOI PMC

Tisa L.S., Adler J. Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. USA. 1995;92:10777–10781. doi: 10.1073/pnas.92.23.10777. PubMed DOI PMC

Norris V., Grant S., Freestone P., Canvin J., Sheikh F.N., Toth I., Trinei M., Modha K., Norman R. Calcium signalling in bacteria. J. Bacteriol. 1996;178:3677–3682. doi: 10.1128/jb.178.13.3677-3682.1996. PubMed DOI PMC

Naseem R., Wann K.T., Holland I.B., Campbell A.K. ATP regulates calcium efflux and growth in E. coli. J. Mol. Biol. 2009;391:42–56. doi: 10.1016/j.jmb.2009.05.064. PubMed DOI

Domínguez D.C., Guragain M., Patrauchan M. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium. 2015;57:151–165. doi: 10.1016/j.ceca.2014.12.006. PubMed DOI

Van Nhieu G.T., Clair C., Grompone G., Sansonetti P. Calcium signalling during cell interactions with bacterial pathogens. Biol. Cell. 2004;96:93–101. doi: 10.1016/j.biolcel.2003.10.006. PubMed DOI

Jones H.E., Holland I.B., Baker H.L., Campbell A.K. Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium. 1999;25:265–274. doi: 10.1054/ceca.1999.0028. PubMed DOI

Herbaud M.L., Guiseppi A., Denizot F., Haiech J., Kilhoffer M.C. Calcium signalling in Bacillus subtilis. Biochim. Biophys. Acta Mol. Cell Res. 1998;1448:212–226. doi: 10.1016/S0167-4889(98)00145-1. PubMed DOI

Claessen D., Emmins R., Hamoen L.W., Daniel R.A., Errington J., Edwards D.H. Control of the cell elongation–division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 2008;68:1029–1046. doi: 10.1111/j.1365-2958.2008.06210.x. PubMed DOI

van den Ent F., Amos L.A., Löwe J. Prokaryotic origin of the actin cytoskeleton. Nature. 2001;413:39–44. doi: 10.1038/35092500. PubMed DOI

Wickstead B., Gull K. The evolution of the cytoskeleton. J. Cell Biol. 2011;194:513–525. doi: 10.1083/jcb.201102065. PubMed DOI PMC

Verchot-Lubicz J., Goldstein R.E. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma. 2010;240:99–107. doi: 10.1007/s00709-009-0088-x. PubMed DOI

Patrauchan M.A., Sarkisova S.A., Franklin M.J. Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology. 2007;153:3838–3851. doi: 10.1099/mic.0.2007/010371-0. PubMed DOI

Bilecen K., Yildiz F.H. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ. Microbiol. 2009;11:2015–2029. doi: 10.1111/j.1462-2920.2009.01923.x. PubMed DOI PMC

Oomes S.J.C.M., Jonker M.J., Wittink F.R.A., Hehenkamp J.O., Breit T.M., Brul S. The effect of calcium on the transcriptome of sporulating B. subtilis cells. Int. J. Food Microbiol. 2009;133:234–242. doi: 10.1016/j.ijfoodmicro.2009.05.019. PubMed DOI

Gode-Potratz C.J., Chodur D.M., McCarter L.L. Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J. Bacteriol. 2010;192:6025–6038. doi: 10.1128/JB.00654-10. PubMed DOI PMC

Domínguez D.C., Lopes R., Holland I.B., Campbell A.K. Proteome analysis of B. subtilis in response to calcium. J. Anal. Bioanal. Techniq. 2011;S6:001–010. doi: 10.4172/2155-9872.S6-001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...