Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37732776
PubMed Central
PMC10581226
DOI
10.1128/spectrum.01112-23
Knihovny.cz E-zdroje
- Klíčová slova
- Gemmatimonadota, MAGs, RuBisCO, anoxygenic phototrophs, gemmatimonadetes, metagenome,
- Publikační typ
- časopisecké články MeSH
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Zobrazit více v PubMed
Zhang H, Sekiguchi Y, Hanada S, Hugenholtz P, Kim H, Kamagata Y, Nakamura K. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53:1155–1163. doi:10.1099/ijs.0.02520-0 PubMed DOI
DeBruyn JM, Fawaz MN, Peacock AD, Dunlap JR, Nixon LT, Cooper KE, Radosevich M. 2013. Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum gemmatimonadetes. J Gen Appl Microbiol 59:305–312. doi:10.2323/jgam.59.305 PubMed DOI
Pascual J, Foesel BU, Geppert A, Huber KJ, Boedeker C, Luckner M, Wanner G, Overmann J. 2018. Roseisolibacter agri gen. nov. sp. nov., a novel slow-growing member of the under-represented phylum gemmatimonadetes. Int J Syst Evol Microbiol 68:1028–1036. doi:10.1099/ijsem.0.002619 PubMed DOI
Pascual J, García-López M, Bills GF, Genilloud O. 2016. Longimicrobium terrae gen. nov. sp. nov., an oligotrophic bacterium of the under-represented phylum gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int J Syst Evol Microbiol 66:1976–1985. doi:10.1099/ijsem.0.000974 PubMed DOI
Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M. 2015. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol 65:2410–2419. doi:10.1099/ijs.0.000272 PubMed DOI
Zeng Y, Wu N, Madsen AM, Chen X, Gardiner AT, Koblížek M. 2020. Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum gemmatimonadetes. Front Microbiol 11:606612. doi:10.3389/fmicb.2020.606612 PubMed DOI PMC
Mujakić I, Piwosz K, Koblížek M. 2022. Phylum gemmatimonadota and its role in the environment. Microorganisms 10:151. doi:10.3390/microorganisms10010151 PubMed DOI PMC
Shivaramu S, Tomasch J, Kopejtka K, Nupur N, Saini MK, Bokhari SNH, Küpper H, Koblížek M. 2022. The influence of calcium on the growth morphology and gene regulation in gemmatimonas phototrophica. Microorganisms 11:27. doi:10.3390/microorganisms11010027 PubMed DOI PMC
Koblížek M, Dachev M, Bína D, Piwosz K, Kaftan D. 2020. Utilization of light energy in phototrophic gemmatimonadetes. J Photochem Photobiol B Biol 213:112085. doi:10.1016/j.jphotobiol.2020.112085 PubMed DOI
Qian P, Gardiner AT, Šímová I, Naydenova K, Croll TI, Jackson PJ, Kloz M, Čubáková P, Kuzma M, Zeng Y, Castro-hartmann P, Van KB, Goldie KN, Kaftan D, Hrouzek P, Hájek J, Agirre J, Siebert CA, Bína D, Sader K, Stahlberg H, Sobotka R, Russo CJ, Polívka T, Hunter CN, Koblížek M. 2022. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem Sci Adv 8:1–11. doi:10.1126/sciadv.abk3139 PubMed DOI PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. 2014. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum gemmatimonadetes. Proc Natl Acad Sci U S A 111:7795–7800. doi:10.1073/pnas.1400295111 PubMed DOI PMC
Mujakić I, Andrei A-Ş, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, Ghai R, Koblížek M. 2021. Common presence of phototrophic gemmatimonadota in temperate freshwater lakes. mSystems 6:e01241-20. doi:10.1128/mSystems.01241-20 PubMed DOI PMC
Zheng X, Dai X, Zhu Y, Yang J, Jiang H, Dong H, Huang L, Hallam SJ. 2022. (Meta)genomic analysis reveals diverse energy conservation strategies employed by globally distributed gemmatimonadota. mSystems 7:e0022822. doi:10.1128/msystems.00228-22 PubMed DOI PMC
Zeng Y, Baumbach J, Barbosa EGV, Azevedo V, Zhang C, Koblížek M. 2016. Metagenomic evidence for the presence of phototrophic gemmatimonadetes bacteria in diverse environments. Environ Microbiol Rep 8:139–149. doi:10.1111/1758-2229.12363 PubMed DOI
Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. doi:10.1128/AEM.72.3.1719-1728.2006 PubMed DOI PMC
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science 359:320–325. doi:10.1126/science.aap9516 PubMed DOI
Morrison JM, Baker KD, Zamor RM, Nikolai S, Elshahed MS, Youssef NH, Aziz RK. 2017. Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA). PLoS ONE 12:e0177488. doi:10.1371/journal.pone.0177488 PubMed DOI PMC
Villena-Alemany C, Mujakić I, Porcal P, Koblížek M, Piwosz K. 2023. Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater Lake. Environ Microbiol Rep 15:60–71. doi:10.1111/1758-2229.13131 PubMed DOI PMC
Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. 2018. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 6:168. doi:10.1186/s40168-018-0548-7 PubMed DOI PMC
Nunoura T, Hirai M, Yoshida-Takashima Y, Nishizawa M, Kawagucci S, Yokokawa T, Miyazaki J, Koide O, Makita H, Takaki Y, Sunamura M, Takai K. 2016. Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the hadal waters of the Japan trench under the Eutrophic ocean. Front Microbiol 7:1261. doi:10.3389/fmicb.2016.01261 PubMed DOI PMC
Thiel V, Neulinger SC, Staufenberger T, Schmaljohann R, Imhoff JF. 2007. Spatial distribution of sponge-associated bacteria in the Mediterranean sponge tethya aurantium. FEMS Microbiol Ecol 59:47–63. doi:10.1111/j.1574-6941.2006.00217.x PubMed DOI
Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. 2017. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J 11:2465–2478. doi:10.1038/ismej.2017.101 PubMed DOI PMC
Kato S, Nakawake M, Kita J, Yamanaka T, Utsumi M, Okamura K, Ishibashi J-I, Ohkuma M, Yamagishi A. 2013. Characteristics of microbial communities in crustal fluids in a deep-sea hydrothermal field of the suiyo seamount. Front Microbiol 4:85. doi:10.3389/fmicb.2013.00085 PubMed DOI PMC
Nunoura T, Nishizawa M, Hirai M, Shimamura S, Harnvoravongchai P, Koide O, Morono Y, Fukui T, Inagaki F, Miyazaki J, Takaki Y, Takai K. 2018. Microbial diversity in sediments from the bottom of the challenger deep, the mariana trench. Microbes Environ 33:186–194. doi:10.1264/jsme2.ME17194 PubMed DOI PMC
Cui G, Li J, Gao Z, Wang Y. 2019. Spatial variations of microbial communities in abyssal and hadal sediments across the challenger deep. PeerJ 7:e6961. doi:10.7717/peerj.6961 PubMed DOI PMC
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. 2019. Microbial community diversity within sediments from two geographically separated hadal trenches. Front Microbiol 10:347. doi:10.3389/fmicb.2019.00347 PubMed DOI PMC
Vipindas PV, Mujeeb RKM, Jabir T, Thasneem TR, Mohamed Hatha AA. 2020. Diversity of sediment bacterial communities in the south eastern Arabian sea. Reg Stud Mar Sci 35:101153. doi:10.1016/j.rsma.2020.101153 DOI
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei A-Ş, Ghai R, Sorokin DY, Muyzer G. 2019. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a siberian soda Lake. BMC Biol 17:69. doi:10.1186/s12915-019-0688-7 PubMed DOI PMC
Zorz JK, Sharp C, Kleiner M, Gordon PMK, Pon RT, Dong X, Strous M. 2019. A shared core microbiome in soda lakes separated by large distances. Nat Commun 10:4230. doi:10.1038/s41467-019-12195-5 PubMed DOI PMC
Giovannoni SJ, Cameron Thrash J, Temperton B. 2014. Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565. doi:10.1038/ismej.2014.60 PubMed DOI PMC
Salcher MM, Schaefle D, Kaspar M, Neuenschwander SM, Ghai R. 2019. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in methylophilaceae. ISME J 13:2764–2777. doi:10.1038/s41396-019-0471-3 PubMed DOI PMC
Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ. 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245. doi:10.1126/science.1114057 PubMed DOI
Thorpe HA, Bayliss SC, Hurst LD, Feil EJ. 2017. Comparative analyses of selection operating on nontranslated intergenic regions of diverse bacterial species. Genetics 206:363–376. doi:10.1534/genetics.116.195784 PubMed DOI PMC
Foerstner KU, von Mering C, Hooper SD, Bork P. 2005. Environments shape the nucleotide composition of genomes. EMBO Rep 6:1208–1213. doi:10.1038/sj.embor.7400538 PubMed DOI PMC
Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, Luo H, Wright JJ, Landry ZC, Hanson NW, Thompson BP, Poulton NJ, Schwientek P, Acinas SG, Giovannoni SJ, Moran MA, Hallam SJ, Cavicchioli R, Woyke T, Stepanauskas R. 2013. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci U S A 110:11463–11468. doi:10.1073/pnas.1304246110 PubMed DOI PMC
McEwan CEA, Gatherer D, McEwan NR. 1998. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 128:173–178. doi:10.1111/j.1601-5223.1998.00173.x PubMed DOI
Mann S, Chen YPP. 2010. Bacterial genomic G + C composition-eliciting environmental adaptation. Genomics 95:7–15. doi:10.1016/j.ygeno.2009.09.002 PubMed DOI
Konstantinidis KT, Tiedje JM. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101:3160–3165. doi:10.1073/pnas.0308653100 PubMed DOI PMC
Numberger D, Ganzert L, Zoccarato L, Mühldorfer K, Sauer S, Grossart HP, Greenwood AD. 2019. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci Rep 9:9673. doi:10.1038/s41598-019-46015-z PubMed DOI PMC
Kaas RS, Friis C, Ussery DW, Aarestrup FM. 2012. Estimating variation within the genes and Inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577. doi:10.1186/1471-2164-13-577 PubMed DOI PMC
Wolf YI, Makarova KS, Yutin N, Koonin EV. 2012. Updated clusters of orthologous genes for archaea: a complex ancestor of the archaea and the byways of horizontal gene transfer. Biol Direct 7:1–15. doi:10.1186/1745-6150-7-46 PubMed DOI PMC
Segata N, Börnigen D, Morgan XC, Huttenhower C. 2013. Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304. doi:10.1038/ncomms3304 PubMed DOI PMC
Rashighi M, Harris JE. 2017. Phylophlan is a new method for improved phylogenetic and taxonomic placement of microbes. Physiol Behav 176:139–148. PubMed
Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. 2020. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J 14:1100–1110. doi:10.1038/s41396-020-0591-9 PubMed DOI PMC
Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, Baker A, Bell SC, Morrow KM, Ragan MA, Miller DJ, Forêt S, Voolstra CR, Tyson GW, Bourne DG, ReFuGe2020 Consortium . 2019. A genomic view of the reef-building coral porites lutea and its microbial symbionts. Nat Microbiol 4:2090–2100. doi:10.1038/s41564-019-0532-4 PubMed DOI
Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. 2011. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807:1398–1413. doi:10.1016/j.bbabio.2011.06.016 PubMed DOI PMC
Engelberts JP, Robbins SJ, Herbold CW, Moeller FU, Jehmlich N, Laffy PW, Wagner M, Webster NS. 2023. Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta. Environ Microbiol 25:646–660. doi:10.1111/1462-2920.16302 PubMed DOI PMC
Kornberg HL. 1966. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11. doi:10.1042/bj0990001 PubMed DOI PMC
Tang KH, Tang YJ, Blankenship RE. 2011. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2:165. doi:10.3389/fmicb.2011.00165 PubMed DOI PMC
Zhao Y, Park RD, Muzzarelli RAA. 2010. Chitin deacetylases: properties and applications. Mar Drugs 8:24–46. doi:10.3390/md8010024 PubMed DOI PMC
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985. doi:10.1111/j.1574-6976.2010.00220.x PubMed DOI PMC
He S, Stevens SLR, Chan L-K, Bertilsson S, Glavina Del Rio T, Tringe SG, Malmstrom RR, McMahon KD. 2017. Ecophysiology of freshwater verrucomicrobia inferred from. mSphere 2:e00277-17. doi:10.1128/mSphere.00277-17 PubMed DOI PMC
Wang L, Wise MJ. 2011. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98:719–729. doi:10.1007/s00114-011-0832-x PubMed DOI
Wang L, Liu Q, Hu J, Asenso J, Wise MJ, Wu X, Ma C, Chen X, Yang J, Tang D. 2018. Structure and evolution of glycogen branching enzyme N-termini from bacteria. Front Microbiol 9:3354. doi:10.3389/fmicb.2018.03354 PubMed DOI PMC
Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. 2008. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci 363:2629–2640. doi:10.1098/rstb.2008.0023 PubMed DOI PMC
Cabello-Yeves PJ, Scanlan DJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Millard AD, Camacho A, Rodriguez-Valera F, Puxty RJ. 2022. α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. ISME J 16:2421–2432. doi:10.1038/s41396-022-01282-z PubMed DOI PMC
Alfreider A, Tartarotti B. 2019. Spatiotemporal dynamics of different CO2 fixation strategies used by prokaryotes in a dimictic lake. Sci Rep 9:15068. doi:10.1038/s41598-019-51584-0 PubMed DOI PMC
Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS. 2008. Distinct form I, II, III, and IV rubisco proteins from the three kingdoms of life provide clues about rubisco evolution and structure/function relationships. J Exp Bot 59:1515–1524. doi:10.1093/jxb/erm361 PubMed DOI
Hanson TE, Tabita FR. 2001. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402. doi:10.1073/pnas.081610398 PubMed DOI PMC
Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A. 2003. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290. doi:10.1126/science.1086997 PubMed DOI
Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, King GM, Greening C. 2019. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 13:2868–2881. doi:10.1038/s41396-019-0479-8 PubMed DOI PMC
Islam ZF, Cordero PRF, Feng J, Chen YJ, Bay SK, Jirapanjawat T, Gleadow RM, Carere CR, Stott MB, Chiri E, Greening C. 2019. Two chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J 13:1801–1813. doi:10.1038/s41396-019-0393-0 PubMed DOI PMC
King GM, Weber CF. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118. doi:10.1038/nrmicro1595 PubMed DOI
Meier DV, Imminger S, Gillor O, Woebken D. 2021. Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems 6:e00786-20. doi:10.1128/mSystems.00786-20 PubMed DOI PMC
Koblížek M. 2015. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 39:854–870. doi:10.1093/femsre/fuv032 PubMed DOI
Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. 2018. Proteorhodopsin variability and distribution in the north pacific subtropical gyre. ISME J 12:1047–1060. doi:10.1038/s41396-018-0074-4 PubMed DOI PMC
DeLong EF, Béjà O. 2010. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359. doi:10.1371/journal.pbio.1000359 PubMed DOI PMC
Zeng Y, Chen X, Madsen AM, Zervas A, Nielsen TK, Andrei A-S, Lund-Hansen LC, Liu Y, Hansen LH. 2020. Potential rhodopsin- and bacteriochlorophyll-based dual phototrophy in a high arctic glacier. mBio 11:e02641-20. doi:10.1128/mBio.02641-20 PubMed DOI PMC
Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, Rodríguez G, Massol-Deyá A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Löffler FE. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci U S A 109:19709–19714. doi:10.1073/pnas.1211238109 PubMed DOI PMC
Yoon S, Nissen S, Park D, Sanford RA, Löffler FE, Kostka JE. 2016. Clade I NosZ from those harboring clade II NosZ.. Appl Environ Microbiol 82:3793–3800. doi:10.1128/AEM.00409-16 PubMed DOI PMC
Chee-Sanford J, Tian D, Sanford R. 2019. Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. Microbiology 165:1345–1354. doi:10.1099/mic.0.000847 PubMed DOI
Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616. doi:10.1128/mmbr.61.4.533-616.1997 PubMed DOI PMC
Graf DRH, Jones CM, Hallin S, de Crécy-Lagard V. 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 9:e114118. doi:10.1371/journal.pone.0114118 PubMed DOI PMC
Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, Ritalahti KM, Löffler FE, Konstantinidis KT. 2014. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio 5:e01193-14. doi:10.1128/mBio.01193-14 PubMed DOI PMC
Jones CM, Graf DRH, Bru D, Philippot L, Hallin S. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7:417–426. doi:10.1038/ismej.2012.125 PubMed DOI PMC
Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L. 2014. Recently identified microbial guild mediates soil N2O sink capacity. Nature Clim Change 4:801–805. doi:10.1038/nclimate2301 DOI
Park D, Kim H, Yoon S. 2017. Nitrous oxide reduction by an obligate. Appl Environ Microbiol 83:1–12. doi:10.1128/AEM.00502-17 PubMed DOI PMC
Leustek T, Martin MN, Bick JA, Davies JP. 2000. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Biol 51:141–165. doi:10.1146/annurev.arplant.51.1.141 PubMed DOI
Grein F, Ramos AR, Venceslau SS, Pereira IAC. 2013. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochim Biophys Acta - Bioenerg 1827:145–160. doi:10.1016/j.bbabio.2012.09.001 PubMed DOI
Villarreal-Chiu JF, Quinn JP, McGrath JW. 2012. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 3:19. doi:10.3389/fmicb.2012.00019 PubMed DOI PMC
Santos-Beneit F. 2015. The pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. doi:10.3389/fmicb.2015.00402 PubMed DOI PMC
Luo H, Benner R, Long RA, Hu J. 2009. Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci U S A 106:21219–21223. doi:10.1073/pnas.0907586106 PubMed DOI PMC
Yurkov V, Csotonyi JT. 2009. Purple Phototrophic Bact Adv Photosynth Respir, p 31–55. In Hunt CN, Daldal F, Thurnauer MC, Beatty JT(ed), New light on aerobic Anoxygenic Phototrophs. Springer, Dordrecht. doi:10.1007/978-1-4020-8815-5 DOI
Mendel RR. 2013. The molybdenum cofactor. J Biol Chem 288:13165–13172. doi:10.1074/jbc.R113.455311 PubMed DOI PMC
Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, Liebl U. 2002. An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105–107. doi:10.1126/science.1072113 PubMed DOI
Tong L. 2013. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863–891. doi:10.1007/s00018-012-1096-0 PubMed DOI PMC
Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, Begley TP. 2003. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol 10:1195–1204. doi:10.1016/j.chembiol.2003.11.011 PubMed DOI
Cadieux N, Kadner RJ. 1999. Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proc Natl Acad Sci U S A 96:10673–10678. doi:10.1073/pnas.96.19.10673 PubMed DOI PMC
Rojo F. 2009. Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. doi:10.1111/j.1462-2920.2009.01948.x PubMed DOI
Appolinario LR, Tschoeke D, Paixão RVS, Venas T, Calegario G, Leomil L, Silva BS, Thompson CC, Thompson FL. 2019. Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the south Atlantic ocean. Environ Pollut 249:295–304. doi:10.1016/j.envpol.2019.03.007 PubMed DOI
Harwood CS, Burchhardt G, Herrmann H, Fuchs G. 1998. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458. doi:10.1111/j.1574-6976.1998.tb00380.x DOI
Dinglasan-Panlilio MJ, Dworatzek S, Mabury S, Edwards E. 2006. Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures. FEMS Microbiol Ecol 56:355–364. doi:10.1111/j.1574-6941.2006.00077.x PubMed DOI
Paver SF, Kent AD. 2010. Temporal patterns in glycolate-utilizing bacterial community composition correlate with phytoplankton population dynamics in humic lakes. Microb Ecol 60:406–418. doi:10.1007/s00248-010-9722-6 PubMed DOI
Smith DJ, Kharbush JJ, Kersten RD, Dick GJ, Glass JB. 2022. Uptake of phytoplankton-derived carbon and cobalamins by novel acidobacteria genera in microcystis blooms inferred from metagenomic and metatranscriptomic evidence. Appl Environ Microbiol 88:e0180321. doi:10.1128/aem.01803-21 PubMed DOI PMC
Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A. 2019. Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 126:359–368. doi:10.1111/jam.14095 PubMed DOI
Pellicer MT, Badía J, Aguilar J, Baldomà L. 1996. Glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J Bacteriol 178:2051–2059. doi:10.1128/jb.178.7.2051-2059.1996 PubMed DOI PMC
Chiriac MC, Haber M, Salcher MM. 2023. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 25:606–641. doi:10.1111/1462-2920.16313 PubMed DOI
Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71. doi:10.1111/j.1574-6976.2002.tb00598.x PubMed DOI
Pivetti CD, Yen M-R, Miller S, Busch W, Tseng Y-H, Booth IR, Saier MH. 2003. Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67:66–85. doi:10.1128/MMBR.67.1.66-85.2003 PubMed DOI PMC
Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. doi:10.1093/bioinformatics/bts174 PubMed DOI
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi:10.7717/peerj.7359 PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi:10.1101/gr.186072.114 PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. 2020. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36:1925–1927. doi:10.1093/bioinformatics/btz848 PubMed DOI PMC
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi:10.1038/ismej.2017.126 PubMed DOI PMC
Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701. doi:10.1128/AEM.02411-13 PubMed DOI PMC
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. doi:10.1093/nar/gkt1226 PubMed DOI PMC
Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x PubMed DOI
Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F, May U, Sanders JG, Zolfo M, Kopylova E, Pasolli E, Knight R, Mirarab S, Huttenhower C, Segata N. 2020. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using phylophlan 3.0. Nat Commun 11:1–10. doi:10.1038/s41467-020-16366-7 PubMed DOI PMC
Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461 PubMed DOI
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340 PubMed DOI PMC
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446 PubMed DOI
Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. doi:10.1093/nar/gkab301 PubMed DOI PMC
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436 PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC
Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, Bye-A-Jee H, Coetzee R, Cukura A, Silva A, Denny P, Dogan T, Ebenezer TG, Fan J, Castro LG, Garmiri P, Georghiou G, Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen P, Joshi V, Jyothi D, Lock A, Lopez R, Luciani A, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Menchi M, Mishra A, Moulang K, Nightingale A, Oliveira CS, Pundir S, Qi G, Raj S, Rice D, Lopez MR, Saidi R, Sampson J, Sawford T, Speretta E, Turner E, Tyagi N, Vasudev P, Volynkin V, Warner K, Watkins X, Zaru R, Zellner H, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Bolleman J, Boutet E, Breuza L, Casals-Casas C, Castro E, Echioukh KC, Coudert E, Cuche B, Doche M, Dornevil D, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hyka-Nouspikel N, Jungo F, Keller G, Kerhornou A, Lara V, Le Mercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto TB, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Pozzato M, Pruess M, Rivoire C, Sigrist C, Sonesson K, Stutz A, Sundaram S, Tognolli M, Verbregue L, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Garavelli JS, Huang H, Laiho K, McGarvey P, Natale DA, Vinayaka CR, Wang Q, Wang Y, Yeh LS, Ruch P, Teodoro D. 2021. Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D480–D489. doi:10.1093/nar/gkaa1100 PubMed DOI PMC
Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. 2007. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599. doi:10.1128/MMBR.00015-07 PubMed DOI PMC
Wrighton KC, Castelle CJ, Varaljay VA, Satagopan S, Brown CT, Wilkins MJ, Thomas BC, Sharon I, Williams KH, Tabita FR, Banfield JF. 2016. RubisCO of a nucleoside pathway known from archaea is found in diverse uncultivated phyla in bacteria. ISME J 10:2702–2714. doi:10.1038/ismej.2016.53 PubMed DOI PMC
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. doi:10.1093/nar/gkw256 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. doi:10.1038/nmeth.4285 PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153 PubMed DOI
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi:10.1016/j.jmb.2015.11.006 PubMed DOI
On the evolution of chromosomal regions with high gene strand bias in bacteria