Gemmatimonas groenlandica sp. nov. Is an Aerobic Anoxygenic Phototroph in the Phylum Gemmatimonadetes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33519753
PubMed Central
PMC7844134
DOI
10.3389/fmicb.2020.606612
Knihovny.cz E-zdroje
- Klíčová slova
- Gemmatimonadetes, MALDI-TOF MS, bacterial isolation, oligotrophic environment, phototrophy,
- Publikační typ
- časopisecké články MeSH
The bacterial phylum Gemmatimonadetes contains members capable of performing bacteriochlorophyll-based phototrophy (chlorophototrophy). However, only one strain of chlorophototrophic Gemmatimonadetes bacteria (CGB) has been isolated to date, hampering our further understanding of their photoheterotrophic lifestyle and the evolution of phototrophy in CGB. By combining a culturomics strategy with a rapid screening technique for chlorophototrophs, we report the isolation of a new member of CGB, Gemmatimonas (G.) groenlandica sp. nov., from the surface water of a stream in the Zackenberg Valley in High Arctic Greenland. Distinct from the microaerophilic G. phototrophica strain AP64T, G. groenlandica strain TET16T is a strictly aerobic anoxygenic phototroph, lacking many oxygen-independent enzymes while possessing an expanded arsenal for coping with oxidative stresses. Its pigment composition and infra-red absorption properties are also different from G. phototrophica, indicating that it possesses a different photosystem apparatus. The complete genome sequence of G. groenlandica reveals unique and conserved features in the photosynthesis gene clusters of CGB. We further analyzed metagenome-assembled genomes of CGB obtained from soil and glacier metagenomes from Northeast Greenland, revealing a wide distribution pattern of CGB beyond the stream water investigated.
Aarhus Institute of Advanced Studies Aarhus University Aarhus Denmark
Centre Algatech Institute of Microbiology CAS Třeboň Czechia
Department of Engineering Aarhus University Aarhus Denmark
Department of Environmental Science Aarhus University Roskilde Denmark
The National Research Centre for the Working Environment Copenhagen Denmark
Zobrazit více v PubMed
Asnicar F., Thomas A. M., Beghini F., Mengoni C., Manara S., Manghi P., et al. (2020). Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11:2500. PubMed PMC
Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., et al. (2008). The RAST server: rapid annotations using subsystems technology. BMC Genom. 9:75. 10.1186/1471-2164-9-75 PubMed DOI PMC
Battistuzzi F. U., Feijao A., Hedges S. B. (2004). A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4:44. 10.1186/1471-2148-4-44 PubMed DOI PMC
Boldareva-Nuianzina E. N., Bláhová Z., Sobotka R., Koblížek M. (2013). Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl. Environ. Microbiol. 79 2596–2604. 10.1128/aem.00104-13 PubMed DOI PMC
Cabello-Yeves P. J., Zemskaya T. I., Rosselli R., Coutinho F. H., Zakharenko A. S., Blinov V. V., et al. (2018). Genomes of novel microbial lineages assembled from the sub-ice waters of Lake Baikal. Appl. Environ. Microbiol. 84:e02132-17. PubMed PMC
Chee-Sanford J., Tian D., Sanford R. (2019). Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. Microbiol. SGM 165 1345–1354. 10.1099/mic.0.000847 PubMed DOI
Chun J., Oren A., Ventosa A., Christensen H., Arahal D. R., da Costa M. S., et al. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68 461–466. 10.1099/ijsem.0.002516 PubMed DOI
Dachev M., Bína D., Sobotka R., Moravcová L., Gardian Z., Kaftan D., et al. (2017). Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol. 15:e2003943. 10.1371/journal.pbio.2003943 PubMed DOI PMC
Darriba D., Posada D., Kozlov A. M., Stamatakis A., Morel B., Flouri T. (2020). ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37 291–294. 10.1093/molbev/msz189 PubMed DOI PMC
DeBruyn J. M., Nixon L. T., Fawaz M. N., Johnson A. M., Radosevich M. (2011). Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl. Environ. Microbiol. 77 6295–6300. 10.1128/aem.05005-11 PubMed DOI PMC
Hanada S., Sekiguchi Y. (2014). “The phylum gemmatimonadetes,” in The Prokaryotes – Other Major Lineages of Bacteria and the Archaea, eds Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. (Berlin: Springer; ), 677–681. 10.1007/978-3-642-38954-2_164 DOI
Hasholt B., Hagedorn B. (2000). Hydrology and geochemistry of river-borne material in a high arctic drainage system, Zackenberg, Northeast Greenland. Arctic Antarct. Alpine Res. 32 84–94. 10.1080/15230430.2000.12003342 DOI
Jaffe A. L., Castelle C. J., Dupont C. L., Banfield J. F. (2019). Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36 435–446. 10.1093/molbev/msy234 PubMed DOI PMC
Jain C., Rodriguez-R L. M., Phillippy A. M., Konstantinidis K. T., Aluru S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9 1–8. PubMed PMC
Janssen P. H. (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72 1719–1728. 10.1128/aem.72.3.1719-1728.2006 PubMed DOI PMC
Jousset A., Bienhold C., Chatzinotas A., Gallien L., Gobet A., Kurm V., et al. (2017). Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11 853–862. 10.1038/ismej.2016.174 PubMed DOI PMC
Kato K., Tanaka R., Sano S., Tanaka A., Hosaka H. (2010). Identification of a gene essential for protoporphyrinogen IX oxidase activity in the Cyanobacterium synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. U.S.A. 107 16649–16654. 10.1073/pnas.1000771107 PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kim M., Oh H. S., Park S. C., Chun J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64 346–351. 10.1099/ijs.0.059774-0 PubMed DOI
Koblížek M. (2015). Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol. Rev. 39 854–870. 10.1093/femsre/fuv032 PubMed DOI
Koblížek M., Dachev M., Bína D., Nupur L., Piwosz K., Kaftan D. (2020). Utilization of light energy in phototrophic Gemmatimonadetes. J. Photochem. Photobiol. B. 213:112085. 10.1016/j.jphotobiol.2020.112085 PubMed DOI
Kozlov A. M., Darriba D., Flouri T., Morel B., Stamatakis A. (2019). RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35 4453–4455. 10.1093/bioinformatics/btz305 PubMed DOI PMC
Lagier J. C., Dubourg G., Million M., Cadoret F., Bilen M., Fenollar F., et al. (2018). Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16 540–550. 10.1038/s41579-018-0041-0 PubMed DOI
Letunic I., Bork P. (2019). Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47 W256–W259. PubMed PMC
Lynch M. D., Neufeld J. D. (2015). Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13 217–229. 10.1038/nrmicro3400 PubMed DOI
Nagashima S., Nagashima K. V. (2013). Comparison of photosynthesis gene clusters retrieved from total genome sequences of purple bacteria. Adv. Bot. Res. 66 151–178. 10.1016/b978-0-12-397923-0.00005-9 DOI
Park D., Kim H., Yoon S. (2017). Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 83 e502–e517. PubMed PMC
Parks D. H., Chuvochina M., Waite D. W., Rinke C., Skarshewski A., Chaumeil P. A., et al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36 996–1004. 10.1038/nbt.4229 PubMed DOI
Pascual J., Foesel B. U., Geppert A., Huber K. J., Boedeker C., Luckner M., et al. (2018). Roseisolibacter agri gen. nov., sp nov., a novel slow-growing member of the under-represented phylum Gemmatimonadetes. Intern. J. Syst. Evol. Microbiol. 68 1028–1036. 10.1099/ijsem.0.002619 PubMed DOI
Pascual J., Garcia-Lopez M., Bills G. F., Genilloud O. (2016). Longimicrobium terrae gen. nov., sp nov., an Oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Intern. J. Syst. Evol. Microbiol. 66 1976–1985. 10.1099/ijsem.0.000974 PubMed DOI
Pastor A., Freixa A., Skovsholt L. J., Wu N., Romaní A. M., Riis T. (2019). Microbial organic matter utilization in high-arctic streams: key enzymatic controls. Microb. Ecol. 78 539–554. 10.1007/s00248-019-01330-w PubMed DOI
Rosselló-Móra R., Amann R. (2015). Past and future species definitions for Bacteria and Archaea. Syst. Appl. Microbiol. 38 209–216. 10.1016/j.syapm.2015.02.001 PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Sullivan M. J., Petty N. K., Beatson S. A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27 1009–1010. 10.1093/bioinformatics/btr039 PubMed DOI PMC
Tabita F. R., Hanson T. E., Li H., Satagopan S., Singh J., Chan S. (2007). Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol. Mol. Biol. Rev. 71 576–599. 10.1128/mmbr.00015-07 PubMed DOI PMC
Tahon G., Willems A. (2017). Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sof. Rondane Mountains, East Antarctica. Syst. Appl. Microbiol. 40 357–369. 10.1016/j.syapm.2017.05.007 PubMed DOI
Vavourakis C. D., Mehrshad M., Balkema C., Van Hall R., Andrei A. Ş., Ghai R., et al. (2019). Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol. 17:69. 10.1186/s12915-019-0688-7 PubMed DOI PMC
Wick R. R., Judd L. M., Gorrie C. L., Holt K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13:e1005595. 10.1371/journal.pcbi.1005595 PubMed DOI PMC
Wilke A., Bischof J., Gerlach W., Glass E., Harrison T., Keegan K. P., et al. (2016). The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res. 44 D590–D594. 10.1007/8623_2015_119 PubMed DOI PMC
Woese C. R. (1987). Bacterial evolution. Microbiol. Rev. 51:221. PubMed PMC
Youssef N. H., Elshahed M. S. (2009). Diversity rankings among bacterial lineages in soil. ISME J. 3 305–313. 10.1038/ismej.2008.106 PubMed DOI
Zeng Y., Baumbach J., Barbosa E. G. V., Azevedo V., Zhang C., Koblížek M. (2016). Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 8 139–149. 10.1111/1758-2229.12363 PubMed DOI
Zeng Y., Chen H., Madsen A. M., Zervas A., Nielsen T. K., Andrei A., et al. (2020). Potential rhodopsin and bacteriochlorophyll-based dual phototrophy in a high Arctic glacier. mBio 11:e02641-20. 10.1128/mBio.02641-20 PubMed DOI PMC
Zeng Y., Feng F., Medová H., Dean J., Koblížek M. (2014). Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. U.S.A. 111 7795–7800. 10.1073/pnas.1400295111 PubMed DOI PMC
Zeng Y., Koblížek M. (2017). “Phototrophic Gemmatimonadetes: a new “purple” branch on the bacterial tree of life,” in Modern Topics in the Phototrophic Prokaryotes, ed. Hallenbeck P. C. (Cham: Springer; ), 163–192. 10.1007/978-3-319-46261-5_5 DOI
Zeng Y., Selyanin V., Lukeš M., Dean J., Kaftan D., Feng F., et al. (2015). Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Intern. J. Syst. Evol. Microbiol. 65 2410–2419. 10.1099/ijs.0.000272 PubMed DOI
Zervas A., Zeng Y., Madsen A. M., Hansen L. H. (2019). Genomics of aerobic photoheterotrophs in wheat phyllosphere reveals divergent evolutionary patterns of photosynthetic genes in Methylobacterium spp. Genome Biol. Evol. 11 2895–2908. 10.1093/gbe/evz204 PubMed DOI PMC
Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., et al. (2003). Gemmatimonas aurantiaca gen. nov., sp nov., a gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Intern. J. Syst. Evol. Microbiol. 53 1155–1163. 10.1099/ijs.0.02520-0 PubMed DOI
Zorz J. K., Sharp C., Kleiner M., Gordon P. M., Pon R.T., Dong X., et al. (2019). A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 10 1–10. PubMed PMC
Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica
2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem
Phylum Gemmatimonadota and Its Role in the Environment
Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5
Common Presence of Phototrophic Gemmatimonadota in Temperate Freshwater Lakes