2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
MC_UP_1201/17
Medical Research Council - United Kingdom
PubMed
35171663
PubMed Central
PMC8849296
DOI
10.1126/sciadv.abk3139
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.
BioEM lab Biozentrum University of Basel Mattenstrasse 26 4058 Basel Switzerland
Cambridge Institute for Medical Research University of Cambridge Cambridge CB2 0XY UK
Center Algatech Institute of Microbiology Czech Academy of Sciences 37981 Třeboň Czechia
Department of Chemistry University of York York YO10 5DD UK
Electron Bio imaging Centre Diamond Light Source Didcot OX11 0DE UK
Faculty of Science University of South Bohemia 37005 České Budějovice Czechia
Lab of Molecular Structure Institute of Microbiology Czech Academy of Sciences Prague Czechia
MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
School of Biosciences University of Sheffield Sheffield S10 2TN UK
Zobrazit více v PubMed
R. E. Blankenship, Molecular Mechanisms of Photosynthesis (John Wiley & Sons, ed. 2, 2014), pp. 312.
Hohmann-Marriott M. F., Blankenship R. E., Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011). PubMed
Martin W. F., Bryant D. A., Beatty J. T., A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol. Rev. 42, 205–232 (2018). PubMed PMC
Sener M., Strumpfer J., Abhishek S., Hunter C. N., Schulten K., Overall energy conversion efficiency of a photosynthetic vesicle. eLife 5, e09541 (2016). PubMed PMC
Bryant D. A., Costas A. M., Maresca J. A., Chew A. G., Klatt C. G., Bateson M. M., Tallon L. J., Hostetler J., Nelson W. C., Heidelberg J. F., Ward D. M., Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic Acidobacterium. Science 317, 523–526 (2007). PubMed
Zeng Y., Feng F. Y., Medová H., Dean J., Koblížek M., Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. U.S.A. 111, 7795–7800 (2014). PubMed PMC
Mujakić I., Andrei A.-Ş., Shabarova T., Fecskeová L. K., Salcher M. M., Piwosz K., Ghai R., Koblížek M., Common presence of phototrophic Gemmatimonadota in temperate freshwater lakes. mSystems 6, (2021). PubMed PMC
Chen G. E., Canniffe D. P., Barnett S. F. H., Hollingshead S., Brindley A. A., Vasilev C., Bryant D. A., Hunter C. N., Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018). PubMed PMC
Qian P., Siebert C. A., Wang P. Y., Canniffe D. P., Hunter C. N., Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å. Nature 556, 203–208 (2018). PubMed
Xin Y., Shi Y., Niu T., Wang Q., Niu W., Huang X., Ding W., Yang L., Blankenship R. E., Xu X., Sun F., Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat. Commun. 9, 1568 (2018). PubMed PMC
Yu L. J., Suga M., Wang-Otomo Z. Y., Shen J. R., Structure of photosynthetic LH1–RC supercomplex at 1.9 Å resolution. Nature 556, 209–213 (2018). PubMed
Qian P., Croll T. I., Swainsbury D. J. K., Castro-Hartmann P., Moriarty N. W., Sader K., Hunter C. N., Cryo-EM structure of the Rhodospirillum rubrum RC–LH1 complex at 2.5 Å. Biochem. J. 478, 3253–3263 (2021). PubMed PMC
Qian P., Swainsbury D. J. K., Croll T. I., Salisbury J. H., Martin E. C., Jackson P. J., Hitchcock A., Castro-Hartmann P., Sader K., Hunter C. N., Cryo-EM structure of the Rhodobacter sphaeroides RC–LH1 core monomer complex at 2.5 Å. Biochem. J. 478, 3775–3790 (2021). PubMed PMC
Dachev M., Bína D., Sobotka R., Moravcová L., Gardian Z., Kaftan D., Šlouf V., Fuciman M., Polívka T., Koblížek M., Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLOS Biol. 15, e2003943 (2017). PubMed PMC
Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed PMC
Swainsbury D. J. K., Qian P., Jackson P. J., Faries K. M., Niedzwiedzki D. M., Martin E. C., Farmer D. A., Malone L. A., Thompson R. F., Ranson N. A., Canniffe D. P., Dickman M. J., Holten D., Kirmaier C., Hitchcock A., Hunter C. N., Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. Sci. Adv. 7, abe2631 (2021). PubMed PMC
Tani K., Kanno R., Makino Y., Hall M., Takenouchi M., Imanishi M., Yu L., Overmann J., Madigan M. T., Kimura Y., Mizoguchi A., Humbel B. M., Wang-Otomo Z., Cryo-EM structure of a Ca2+-bound photosynthetic LH1-RC complex containing multiple αβ-polypeptides. Nat. Commun. 11, 4955 (2020). PubMed PMC
Nupur M., Kuzma J., Hájek P., Hrouzek A., Gardiner T., Lukeš M., Moos M., Šimek P., Koblížek M., Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci. Rep. 11, 15964 (2021). PubMed PMC
Gardiner A. T., Naydenova K., Castro-Hartmann P., Nguyen-Phan T. C., Russo C. J., Sader K., Hunter C. N., Cogdell R. J., Qian P., The 2.4 Å cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Sci. Adv. 8, abe4650 (2021). PubMed PMC
McDermott G., Prince S. M., Freer A. A., Hawthornthwaite-Lawless A. M., Papiz M. Z., Cogdell R. J., Isaacs N. W., Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995).
Koepke J., Hu X. C., Muenke C., Schulten K., Michel H., The crystal structure of the light-harvesting complex II (B800-B850) from Rhodospirillum molischanum. Structure 4, 581–597 (1996). PubMed
Jamieson S. J., Wang P., Qian P., Kirkland J. Y., Conroy M. J., Hunter C. N., Bullough P. A., Projection structure of the photosynthetic reaction center–antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J. 21, 3927–3935 (2002). PubMed PMC
Qian P., Papiz M. Z., Jackson P. J., Brindley A. A., Ng I. W., Olsen J. D., Dickman M. J., Bullough P. A., Hunter C. N., Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: Dimerization and quinone channels promoted by PufX. Biochemistry 52, 7575–7585 (2013). PubMed
Roszak A. W., Howard T. D., Southall J., Gardiner A. T., Law C. J., Isaacs N. W., Cogdell R. J., Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969–1972 (2003). PubMed
Qian P., Addlesee H. A., Ruban A. V., Wang P., Bullough P. A., Hunter C. N., A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: Characterization by optical spectroscopy and cryo-electron microscopy. J. Biol. Chem. 278, 23678–23685 (2003). PubMed
Cogdell R. J., Gall A., Köhler J., The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006). PubMed
Polivka T., Frank H. A., Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc. Chem. Res. 43, 1125–1134 (2010). PubMed PMC
Hess S., Chachisvilis M., Timpmann K., Jones M. R., Fowler G. J., Hunter C. N., Sundström V., Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc. Natl. Acad. Sci. U.S.A. 92, 12333–12337 (1995). PubMed PMC
Zeng Y., Nupur, Wu N., Madsen A. M., Chen X., Gardiner A. T., Koblížek M., Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes. Front. Microbiol. 11, 606612 (2021). PubMed PMC
Naydenova K., Jia P., Russo C. J., Electron cryomicroscopy with sub-Angstrom specimen movement. Science , 223–226 (2020). PubMed PMC
Bellare J. R., David H. T., Scriven L. E., Talmon Y., Controlled environment vitrification system: An improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). PubMed
Russo C. J., Passmore L. A., Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens. J. Struct. Biol. 193, 33–44 (2016). PubMed PMC
Sader K., Matadeen R., Hartmann P. C., Halsan T., Schlichten C., Industrial cryo-EM facility setup and management. Acta Cryst. D 76, 313–325 (2020). PubMed PMC
Zivanov J., Nakane T., Forsberg B. O., Kimanius D., Hagen W. J. H., Lindahl E., Scheres S. H. W., New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). PubMed PMC
Rohou A., Grigorieff N., CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). PubMed PMC
Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., Hagel P., Sitsel O., Raisch T., Prumbaum D., Quentin D., Roderer D., Tacke S., Siebolds B., Schubert E., Shaikh T. R., Lill P., Gatsogiannis C., Raunser S., SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019). PubMed PMC
Zivanov J., Nakane T., Scheres S. H. W., A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. Iucrj 6, 5–17 (2019). PubMed PMC
Ramlaul K., Palmer C. M., Nakane T., Aylett C. H. S., Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol. 211, 107545 (2020). PubMed PMC
Naydenova K., Russo C. J., Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun. 8, 629 (2017). PubMed PMC
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004). PubMed
Croll T. I., ISOLDE: A physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018). PubMed PMC
Shaya D., Zhao W., Garron M., Xiao Z., Cui Q., Zhang Z., Sulea T., Linhardt R. J., Cygler M., Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate. J. Biol. Chem. 285, 20051–20061 (2010). PubMed PMC
Tiemeyer M., Aoki K., Paulson J., Cummings R. D., York W. S., Karlsson N. G., Lisacek F., Packer N. H., Campbell M. P., Aoki N. P., Fujita A., Matsubara M., Shinmachi D., Tsuchiya S., Yamada I., Pierce M., Ranzinger R., Narimatsu H., Aoki-Kinoshita K. F., GlyTouCan: An accessible glycan structure repository. Glycobiology 27, 915–919 (2017). PubMed PMC
Lombard V., Ramulu H. G., Drula E., Coutinho P. M., Henrissat B., The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014). PubMed PMC
Agirre J., Iglesias-Fernández J., Rovira C., Davies G. J., Wilson K. S., Cowtan K. D., Privateer: Software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Boil. 22, 833–834 (2015). PubMed
Edgar R. C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Price M. N., Dehal P. S., Arkin A. P., FastTree 2–approximately maximum-likelihood trees for large alignments. PLOS ONE 5, e9490 (2010). PubMed PMC
Kucukelbir A., Sigworth F. J., Tagare H. D., Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). PubMed PMC
Zigmantas D., Hiller R. G., Sharples F. P., Frank H. A., Sundströma V., Polívka T., Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 6, 3009–3016 (2004).
West R. G., Fuciman M., Staleva-Musto H., Šebelík V., Bína D., Durchan M., Kuznetsova V., Polívka T., Equilibration dependence of fucoxanthin S1 and ICT signatures on polarity, proticity, and temperature by multipulse femtosecond absorption spectroscopy. J. Phys. Chem. B 122, 7264–7276 (2018). PubMed
Scholes G. D., Fleming G. R., On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B 104, 1854–1868 (2000).
Dobáková M., Sobotka R., Tichý M., Komenda J., Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 149, 1076–1086 (2009). PubMed PMC
Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica