Molecular factors controlling photosynthetic light harvesting by carotenoids

. 2010 Aug 17 ; 43 (8) : 1125-34.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid20446691

Grantová podpora
R01 GM030353 NIGMS NIH HHS - United States
GM-30353 NIGMS NIH HHS - United States

Carotenoids are naturally occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photoinduced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in the proximity of chlorophylls. A few three-dimensional structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates the elucidation of correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids lutein, neoxanthin, and violaxanthin to transfer energy to chlorophyll. The third, the peridinin-chlorophyll-protein (PCP) from the dinoflagellate Amphidinium carterae, is the only known complex in which the bound carotenoid (peridinin) pigments outnumber the chlorophylls. The last is xanthorhodopsin from the eubacterium Salinibacter ruber. This complex contains the carotenoid salinixanthin, which transfers energy to a retinal chromophore. The carotenoids in these pigment-protein complexes transfer energy with high efficiency by optimizing both the distance and orientation of the carotenoid donor and chlorophyll acceptor molecules. Importantly, the versatility and robustness of carotenoids in these light-harvesting pigment-protein complexes have led to their incorporation in the design and synthesis of nanoscale antenna systems. In these bioinspired systems, researchers are seeking to improve the light capture and use of energy from the solar emission spectrum.

Zobrazit více v PubMed

Isler O, editor. Carotenoids. Basel: 1971.

Hudson BS, Kohler BE. A low-lying weak transition in polyene α,ω-diphenyloctatetraene. Chem. Phys. Lett. 1972;14:299–304.

Polívka T, Sundström V. Ultrafast dynamics of carotenoid excited states - From solution to natural and artificial systems. Chem. Rev. 2004;104:2021–2071. PubMed

Polívka T, Sundström V. Dark excited states of carotenoids: Consensus and controversy. Chem. Phys. Lett. 2009;477:1–11.

Krueger BP, Scholes GD, Jimenez R, Fleming GR. Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J. Phys. Chem. B. 1998;102:2284–2292.

Scholes GD. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 2003;54:57–87. PubMed

McDermott G, Prince SM, Freer AA, Hawthornwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature. 1995;374:517–521.

Shreve AP, Trautman JK, Frank HA, Owens TG, Albrecht AC. Femtosecond energy transfer pricesses in the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim. Biophys. Acta. 1991;1058:280–288. PubMed

Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T. Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex PubMed PMC

Koyama Y, Rondonuwu FS, Fujii R, Watanabe Y. Light-harvesting function of carotenoids in photosynthesis: The roles of the newly found 1Bu− state. Biopolymers. 2004;74:2–18. PubMed

Krueger BP, Scholes GD, Fleming GR. Calculation of couplings and energy transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B. 1998;102:5378–5386.

Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y. Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem. Phys. Lett. 2004;393:184–191.

Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in (β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J. Chem. Phys. 2009;130:214–506. PubMed

Cong H, Niedzwiedzki DM, Gibson GN, LaFountain AM, Kelsh RM, Gardiner AT, Cogdell RJ, Frank HA. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J. Phys. Chem. B. 2008;112:10689–10703. PubMed PMC

Zhang JP, Fujii R, Qian P, Inaba T, Mizoguchi T, Koyama Y, Onaka K, Watanabe Y, Nagae H. Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria. J. Phys. Chem. B. 2000;704:3683–3691.

Polívka T, Pullerits T, Frank HA, Cogdell RJ, Sundström V. Ultrafast formation of a carotenoid radical in LH2 antenna complexes of purple bacteria. J. Phys. Chem. B. 2004;108:15398–15407.

Polívka T, Niedzwiedzki D, Fuciman M, Sundström V, Frank HA. Role of B800 in carotenoid-bacteriochlorophyll energy and electron transfer in LH2 complexes from the purple bacterium Rhodobacter sphaeroides. J. Phys. Chem. B. 2007;111:7422–7431. PubMed

Gradinaru CC, Kennis JTM, Papagiannakis E, van Stokkum IHM, Cogdell RJ, Fleming GR, Niederman RA, van Grondelle R. An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. U.S.A. 2001;98:2364–2369. PubMed PMC

Papagiannakis E, Kennis JTM, van Stokkum IHM, Cogdell RJ, van Grondelle R. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc. Natl. Acad. Sci. U.S.A. 2002;99:6017–6022. PubMed PMC

Ritz T, Damjanovic A, Schulten K, Zhang JP, Koyama Y. Efficient light harvesting through carotenoids. Photosynth. Res. 2000;66:125–144. PubMed

Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 2004;428:287–292. PubMed

Gradinaru CC, van Stokkum IHM, Pascal AA, van Grondelle R, van Amerongen H. Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump-probe study. J. Phys. Chem. B. 2000;104:9330–9342.

Akimoto S, Yokono M, Ohmae M, Yamazaki I, Tanaka A, Higuchi M, Tsuchiya T, Miyashita H, Mimuro M. Ultrafast excitation relaxation dynamics of lutein in solution and in the light-harvesting complexes II isolated from Arabidopsis thaliana. J. Phys. Chem. B. 2005;109:12612–12619. PubMed

Croce R, Müller MG, Bassi R, Holzwarth AR. Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. Femtosecond transient absorption measurements. Biophys. J. 2001;80:901–915. PubMed PMC

Gibasiewicz K, Croce R, Morosinotto T, Ihalainen JA, van Stokkum IHM, Dekker JP, Bassi R, van Grondelle R. Excitation energy transfer pathways in Lhca4. Biophys. J. 2005;88:1959–1969. PubMed PMC

Holt NE, Kennis JTM, Fleming GR. Femtosecond fluorescence upconversion studies of light harvesting by beta-carotene in oxygenic photosynthetic core proteins. J. Phys. Chem. B. 2004;108:19029–19035.

de Weerd FL, Kennis JTM, Dekker JP, van Grondelle R. β-carotene to chlorophyll singlet energy transfer in the photosystem I core of Synechococcus elongatus proceeds via the β-carotene S2 and S1 states. J. Phys. Chem. B. 2003;107:5995–6002.

Polívka T, Zigmantas D, Sundström V, Formaggio E, Cinque G, Bassi R. Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry. 2002;41:439–450. PubMed

Hilbert M, Wehling A, Schlodder E, Walla PJ. Two-photon-sensitized fluorescence and excitation spectra of photosystem I of Thermosynechococcus elongates. J. Phys. Chem. B. 2004;108:13022–13030.

Walla PJ, Linden PA, Ohta K, Fleming GR. Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and β-carotene in solution: Efficient car S1-Chl electronic energy transfer via hot S1 states? J. Phys. Chem. A. 2002;106:1909–1916.

Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 1994;41:389–395. PubMed

Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007;450:575–578. PubMed

Holt NE, Zigmantas D, Valkunas L, Li X, Niyogi KK, Fleming GR. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science. 2005;307:433–436. PubMed

Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. U.S.A. 2009;106:12311–12316. PubMed PMC

Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem. Phys. Lett. 2009;483:262–267.

Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J. Phys. Chem. B. 2000;104:4569–4577.

Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polívka T. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Phys. 2004;6:3009–3016.

Polívka T, Hiller RG, Frank HA. Spectroscopy of the peridinin-chlorophyll-a protein: Insight into light-harvesting strategy of marine algae. Arch. Biochem. Biophys. 2007;458:111–120. PubMed

Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K. Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science. 1996;272:1788–1791. PubMed

Schulte T, Niedzwiedzki DM, Birge RR, Hiller RG, Polívka T, Hofmann E, Frank HA. Identification of a single peridinin sensing Chl-a excitation in reconstituted peridinin-chlorophyll a-proteins (PCP) by crystallography and spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2009;106:20764–20769. PubMed PMC

Bautista JA, Hiller RG, Sharples FP, Gosztola D, Wasielewski M, Frank HA. Singlet and triplet energy transfer in the peridinin-chlorophyll a protein from Amphidinium carterae. J. Phys. Chem. A. 1999;103:2267–2273.

Zigmantas D, Hiller RG, Sundström V, Polívka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc. Natl. Acad. Sci. U.S.A. 2002;99:16760–16765. PubMed PMC

Krueger BP, Lampoura SS, van Stokkum IHM, Papagiannakis E, Salverda JM, Gradinaru CC, Rutkauskas D, Hiller RG, van Grondelle R. Energy transfer in the peridinin chlorophyll-a protein of Amphidinium carterae studied by polarized transient absorption and target analysis. Biophys. J. 2001;80:2843–2855. PubMed PMC

Ilagan RP, Chapp TW, Hiller RG, Sharples FP, Polívka T, Frank HA. Optical spectroscopic studies of light-harvesting by pigment-reconstituted peridinin-chlorophyll-proteins at cryogenic temperatures. Photosynth. Res. 2006;90:5–15. PubMed PMC

Miller DJ, Catmull J, Puskeiler R, Tweedale H, Sharples FP, Hiller RG. Reconstitution of the peridinin-chlorophyll a protein (PCP): Evidence for functional flexibility in chlorophyll binding. Photosynth. Res. 2005;86:229–240. PubMed

Polívka T, Pascher T, Sundström V, Hiller RG. Tuning energy transfer in the peridinin-chlorophyll complex by reconstitution with different chlorophylls. Photosynth. Res. 2005;86:217–227. PubMed

Polívka T, van Stokkum HM, Zigmantas D, van Grondelle R, Sundström V, Hiller RG. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry. 2006;45:8516–8526. PubMed

Papagiannakis E, van Stokkum IHM, Fey H, Büchel C, van Grondelle R. Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth. Res. 2005;86:241–250. PubMed

Pšenčík J, Ma YZ, Arellano JB, Garcia-Gil J, Holzwarth AR, Gillbro T. Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth. Res. 2002;71:5–18. PubMed

Fuciman M, Chábera P, Župčanová A, Hříbek P, Arellano JB, Váchao F, Pšenčik J, Polívka T. Excited state properties of aryl carotenoids. Phys. Chem. Chem. Phys. 2010;12:3112–3120. PubMed

Montano GA, Xin YY, Lin S, Blankenship RE. Carotenoid and bacteriochlorophyll energy transfer in the B808–866 complex from Chloroflexus aurantiacus. J. Phys. Chem. B. 2004;108:10607–10611.

Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK. Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science. 2005;309:2061–2064. PubMed PMC

Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys. J. 2009;96:2268–2277. PubMed PMC

Debreczeny MP, Wasielewski MR, Shinoda S, Osuka A. Singlet-singlet energy transfer mechanisms in covalently-linked fucoxanthin- and zeaxanthin-pyropheophorbide molecules. J. Am. Chem. Soc. 1997;119:6407–6414.

Polívka T, Pellnor M, Melo E, Pascher T, Sundström V, Osuka A, Naqvi KR. Polarity-tuned energy transfer efficiency in artificial light-harvesting antennae containing carbonyl carotenoids peridinin and fucoxanthin. J. Phys. Chem. C. 2007;111:467–476.

Macpherson AN, Liddell PA, Kuciauskas D, Tatman D, Gillbro T, Gust D, Moore TA, Moore AL. Ultrafast energy transfer from a carotenoid to a chlorin in a simple artificial photosynthetic antenna. J. Phys. Chem. B. 2002;106:9424–9433.

Marino-Ochoa E, Palacios R, Kodis G, Macpherson AN, Gillbro T, Gust D, Moore TA, Moore AL. High-efficiency energy transfer from carotenoids to a phthalocyanine in an artificial photosynthetic antenna. Photochem. Photobiol. 2002;76:116–121. PubMed

Berera R, van Stokkum IHM, Kodis G, Keirstead AE, Pillai S, Herrero C, Palacios RE, Vengris M, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM. Energy transfer, excited-state deactivation, and exciplex formation in artificial caroteno-phthalocyanine light-harvesting antennas. J. Phys. Chem. B. 2007;111:6868–6877. PubMed

Berera R, Herrero C, van Stokkum IHM, Vengris M, Kodis G, Palacios RE, van Amerongen H, van Grondelle R, Gust D, Moore TA, Moore AL, Kennis JTM. A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2006;103:5343–5348. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus

. 2022 Oct ; 154 (1) : 75-87. [epub] 20220906

2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem

. 2022 Feb 18 ; 8 (7) : eabk3139. [epub] 20220216

Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin

. 2018 Mar ; 135 (1-3) : 33-43. [epub] 20170520

Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae

. 2013 Nov ; 117 (1-3) : 257-65. [epub] 20130801

Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties

. 2012 May 29 ; 109 (22) : 8570-5. [epub] 20120514

Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

. 2012 Mar ; 111 (1-2) : 193-204. [epub] 20110811

Carotenoid response to retinal excitation and photoisomerization dynamics in xanthorhodopsin

. 2011 Nov 07 ; 516 (1-3) : 96-101.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...