Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin

. 2012 Mar ; 111 (1-2) : 193-204. [epub] 20110811

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21833799

Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.

Zobrazit více v PubMed

Biochemistry. 2002 Mar 26;41(12):4127-36 PubMed

FEBS Lett. 2008 Aug 20;582(19):2869-74 PubMed

Acc Chem Res. 2005 Aug;38(8):612-23 PubMed

Spectrochim Acta A Mol Biomol Spectrosc. 2000 Sep;56A(10):2001-10 PubMed

Biophys J. 2003 Feb;84(2 Pt 1):1161-79 PubMed

FEBS Lett. 2007 Nov 27;581(28):5435-9 PubMed

Phys Chem Chem Phys. 2005 Jul 21;7(14):2793-803 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):183-9 PubMed

Biochim Biophys Acta. 1960 Jul 15;41:478-84 PubMed

Photosynth Res. 2008 Feb-Mar;95(2-3):191-6 PubMed

J Phys Chem A. 2005 Apr 14;109(14):3120-7 PubMed

Biochim Biophys Acta. 1999 Nov 10;1413(3):172-80 PubMed

Photosynth Res. 2010 Jun;104(2-3):245-55 PubMed

Acc Chem Res. 2010 Aug 17;43(8):1125-34 PubMed

Biophys J. 2006 Aug 15;91(4):1433-40 PubMed

Biophys J. 2004 Aug;87(2):1165-72 PubMed

Photochem Photobiol. 2008 Sep-Oct;84(5):1187-94 PubMed

Photochem Photobiol. 2004 Nov-Dec;80(3):572-8 PubMed

Photochem Photobiol. 2000 Jun;71(6):715-23 PubMed

Arch Biochem Biophys. 1962 Aug;98:274-85 PubMed

Biochemistry. 2002 Dec 3;41(48):14403-11 PubMed

Proc Natl Acad Sci U S A. 2009 May 26;106(21):8525-30 PubMed

Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 PubMed

Biochemistry. 2003 Sep 2;42(34):10246-51 PubMed

Photochem Photobiol. 2004 Jan;79(1):68-75 PubMed

Photosynth Res. 1994 Jul;41(1):235-43 PubMed

J Bacteriol. 2009 Nov;191(21):6701-8 PubMed

Photosynth Res. 2002;71(1-2):5-18 PubMed

Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2364-9 PubMed

Arch Microbiol. 1997 Oct;168(4):270-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...