Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriální proteiny chemie izolace a purifikace metabolismus MeSH
- bakteriochlorofyly chemie izolace a purifikace metabolismus MeSH
- Chlorobium chemie MeSH
- fotosyntéza MeSH
- přenos energie * MeSH
- spektrální analýza MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- xanthofyly chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- astaxanthine MeSH Prohlížeč
- bacteriochlorophyll c MeSH Prohlížeč
- bakteriální proteiny MeSH
- bakteriochlorofyly MeSH
- světlosběrné proteinové komplexy MeSH
- xanthofyly MeSH
Chlorosomes, the light-harvesting antennae of green photosynthetic bacteria, are based on large aggregates of bacteriochlorophyll molecules. Aggregates with similar properties to those in chlorosomes can also be prepared in vitro. Several agents were shown to induce aggregation of bacteriochlorophyll c in aqueous environments, including certain lipids, carotenes, and quinones. A key distinguishing feature of bacteriochlorophyll c aggregates, both in vitro and in chlorosomes, is a large (>60 nm) red shift of their Q(y) absorption band compared with that of the monomers. In this study, we investigate the self-assembly of bacteriochlorophyll c with the xanthophyll astaxanthin, which leads to the formation of a new type of complexes. Our results indicate that, due to its specific structure, astaxanthin molecules competes with bacteriochlorophylls for the bonds involved in the aggregation, thus preventing the formation of any significant red shift compared with pure bacteriochlorophyll c in aqueous buffer. A strong interaction between both the types of pigments in the developed assemblies, is manifested by a rather efficient (~40%) excitation energy transfer from astaxanthin to bacteriochlorophyll c, as revealed by fluorescence excitation spectroscopy. Results of transient absorption spectroscopy show that the energy transfer is very fast (<500 fs) and proceeds through the S(2) state of astaxanthin.
Zobrazit více v PubMed
Biochemistry. 2002 Mar 26;41(12):4127-36 PubMed
FEBS Lett. 2008 Aug 20;582(19):2869-74 PubMed
Acc Chem Res. 2005 Aug;38(8):612-23 PubMed
Spectrochim Acta A Mol Biomol Spectrosc. 2000 Sep;56A(10):2001-10 PubMed
Biophys J. 2003 Feb;84(2 Pt 1):1161-79 PubMed
FEBS Lett. 2007 Nov 27;581(28):5435-9 PubMed
Phys Chem Chem Phys. 2005 Jul 21;7(14):2793-803 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):183-9 PubMed
Biochim Biophys Acta. 1960 Jul 15;41:478-84 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):191-6 PubMed
J Phys Chem A. 2005 Apr 14;109(14):3120-7 PubMed
Biochim Biophys Acta. 1999 Nov 10;1413(3):172-80 PubMed
Photosynth Res. 2010 Jun;104(2-3):245-55 PubMed
Acc Chem Res. 2010 Aug 17;43(8):1125-34 PubMed
Biophys J. 2006 Aug 15;91(4):1433-40 PubMed
Biophys J. 2004 Aug;87(2):1165-72 PubMed
Photochem Photobiol. 2008 Sep-Oct;84(5):1187-94 PubMed
Photochem Photobiol. 2004 Nov-Dec;80(3):572-8 PubMed
Photochem Photobiol. 2000 Jun;71(6):715-23 PubMed
Arch Biochem Biophys. 1962 Aug;98:274-85 PubMed
Biochemistry. 2002 Dec 3;41(48):14403-11 PubMed
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8525-30 PubMed
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 PubMed
Biochemistry. 2003 Sep 2;42(34):10246-51 PubMed
Photochem Photobiol. 2004 Jan;79(1):68-75 PubMed
Photosynth Res. 1994 Jul;41(1):235-43 PubMed
J Bacteriol. 2009 Nov;191(21):6701-8 PubMed
Photosynth Res. 2002;71(1-2):5-18 PubMed
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2364-9 PubMed
Arch Microbiol. 1997 Oct;168(4):270-6 PubMed