Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
19717605
PubMed Central
PMC2795307
DOI
10.1128/jb.00690-09
PII: JB.00690-09
Knihovny.cz E-zdroje
- MeSH
- bakteriální chromatofory MeSH
- bakteriochlorofyly fyziologie MeSH
- buněčná membrána MeSH
- Chloroflexus metabolismus MeSH
- difrakce rentgenového záření MeSH
- intracelulární membrány MeSH
- organely fyziologie ultrastruktura MeSH
- světlosběrné proteinové komplexy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriochlorofyly MeSH
- světlosběrné proteinové komplexy MeSH
The green filamentous bacterium Chloroflexus aurantiacus employs chlorosomes as photosynthetic antennae. Chlorosomes contain bacteriochlorophyll aggregates and are attached to the inner side of a plasma membrane via a protein baseplate. The structure of chlorosomes from C. aurantiacus was investigated by using a combination of cryo-electron microscopy and X-ray diffraction and compared with that of Chlorobi species. Cryo-electron tomography revealed thin chlorosomes for which a distinct crystalline baseplate lattice was visualized in high-resolution projections. The baseplate is present only on one side of the chlorosome, and the lattice dimensions suggest that a dimer of the CsmA protein is the building block. The bacteriochlorophyll aggregates inside the chlorosome are arranged in lamellae, but the spacing is much greater than that in Chlorobi species. A comparison of chlorosomes from different species suggested that the lamellar spacing is proportional to the chain length of the esterifying alcohols. C. aurantiacus chlorosomes accumulate larger quantities of carotenoids under high-light conditions, presumably to provide photoprotection. The wider lamellae allow accommodation of the additional carotenoids and lead to increased disorder within the lamellae.
Zobrazit více v PubMed
Alster, J., A. Zupcanova, F. Vacha, and J. Pšenčík. 2008. Effect of quinones on formation and properties of bacteriochlorophyll c aggregates. Photosynth. Res. 95:183-189. PubMed
Arellano, J. B., M. Torkkeli, R. Tuma, P. Laurinmäki, T. B. Melo, T. P. Ikonen, S. J. Butcher, R. E. Serimaa, and J. Pšenčík. 2008. Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes. Langmuir 24:2035-2041. PubMed
Balaban, T. S., H. Tamiaki, and A. R. Holzwarth. 2005. Chlorins programmed for self-assembly. Top. Curr. Chem. 258:1-38.
Belenky, M., B. Wang, A. Belenky, and J. Herzfeld. 2000. Monitoring of isotope substitution in cyanobacteria by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Anal. Biochem. 280:182-185. PubMed
Blankenship, R. E., and K. Matsuura. 2003. Antenna complexes from green photosynthetic bacteria, p. 195-217. In B. R. Green and W. W. Parson (ed.), Light-harvesting antennas. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Borrego, C. M., and L. J. Garcia-Gil. 1995. Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth. Res. 45:21-30. PubMed
Borrego, C. M., P. D. Gerola, M. Miller, and R. P. Cox. 1999. Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth. Res. 59:159-166.
Bryant, D. A., E. V. Vassilieva, N. U. Frigaard, and H. Li. 2002. Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403-14411. PubMed
Bryant, D. A., A. M. G. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward. 2007. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523-526. PubMed
Carbonera, D., E. Bordignon, G. Giacometti, G. Agostini, A. Vianelli, and C. Vannini. 2001. Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus. A comparative study. J. Phys. Chem. B 105:246-255.
Fages, F., N. Griebenow, K. Griebenow, A. R. Holzwarth, and K. Schaffner. 1990. Characterization of light-harvesting pigments of Chloroflexus aurantiacus. Two new chlorophylls: oleyl (octadec-9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides c. J. Chem. Soc. Perkin Trans. 2791-2797.
Foster, J. M., T. E. Redlinger, R. E. Blankenship, and R. C. Fuller. 1986. Oxygen regulation of development of the photosynthetic membrane system in Chloroflexus aurantiacus. J. Bacteriol. 167:655-659. PubMed PMC
Frigaard, N. U., and D. A. Bryant. 2006. Chlorosomes: antenna organelles in photosynthetic green bacteria, p. 79-114. In J. M. Shively (ed.), Complex intracellular structures in prokaryotes. Microbiology monographs, vol. 2. Springer, Berlin, Germany.
Ganapathy, S., G. T. Oostergetel, P. K. Wawrzyniak, M. Reus, A. G. M. Chew, F. Buda, E. J. Boekema, D. A. Bryant, A. R. Holzwarth, and H. J. M. de Groot. 2009. Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc. Natl. Acad. Sci. USA 106:8525-8530. PubMed PMC
Gerola, P. D., and J. M. Olson. 1986. A new bacteriochlorophyll a-protein complex associated with the chlorosomes of green sulfur bacteria. Biochim. Biophys. Acta 848:69-76. PubMed
Gloe, A., and N. Risch. 1978. Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch. Microbiol. 118:153-156. PubMed
Gregor, J., and G. Klug. 1999. Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiol. Lett. 179:1-9. PubMed
Hanada, S., and B. Pierson. 2007. The family Chloroflexaceae, p. 815-842. In M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes, vol. 7. Proteobacteria: delta and epsilon subclasses. Deeply rooting bacteria. Springer, Berlin, Germany.
Ikonen, T. P., H. Li, J. Pšenčík, P. A. Laurinmäki, S. J. Butcher, N. U. Frigaard, R. E. Serimaa, D. A. Bryant, and R. Tuma. 2007. X-ray scattering and electron cryomicroscopy study on the effect of carotenoid biosynthesis to the structure of Chlorobium tepidum chlorosomes. Biophys. J. 93:620-628. PubMed PMC
Klinger, P., J. B. Arellano, F. E. Vacha, J. Hala, and J. Pšenčík. 2004. Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes. Photochem. Photobiol. 80:572-578. PubMed
Kremer, J. R., D. N. Mastronarde, and J. R. McIntosh. 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71-76. PubMed
Larsen, K. L., R. P. Cox, and M. Miller. 1994. Effects of illumination intensity on bacteriochlorophyll c homolog distribution in Chloroflexus aurantiacus grown under controlled conditions. Photosynth. Res. 41:151-156. PubMed
Li, H., N. U. Frigaard, and D. A. Bryant. 2006. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. Biochemistry 45:9095-9103. PubMed
Martinez-Planells, A., J. B. Arellano, C. A. Borrego, C. Lopez-Iglesias, F. Gich, and J. S. Garcia-Gil. 2002. Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth. Res. 71:83-90. PubMed
Mastronarde, D. N. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36-51. PubMed
Melo, T. B., N. U. Frigaard, K. Matsuura, and K. R. Naqvi. 2000. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim. Acta Part A Mol. Biol. Spectrosc. 56:2001-2010. PubMed
Montaño, G. A., H. M. Wu, S. Lin, D. C. Brune, and R. E. Blankenship. 2003. Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246-10251. PubMed
Oelze, J. 1985. Analysis of bacteriochlorophylls. Methods Microbiol. 18:257-284.
Oelze, J. 1992. Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J. Bacteriol. 174:5021-5026. PubMed PMC
Oelze, J., and J. R. Golecki. 1995. Membranes and chlorosomes of green bacteria: structure, composition, and development, p. 259-278. In R. E. Blankenship, M. T. Madigan, and C. E. Bauer (ed.), Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Olson, J. M. 1980. Chlorophyll organization in green photosynthetic bacteria. Biochim. Biophys. Acta 594:33-51. PubMed
Olson, J. M. 1998. Chlorophyll organization and function in green photosynthetic bacteria. Photochem. Photobiol. 67:61-75.
Oostergetel, G. T., M. Reus, A. Gomez Maqueo Chew, D. A. Bryant, E. J. Boekema, and A. R. Holzwarth. 2007. Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett. 581:5435-5439. PubMed
Pedersen, M. O., J. Underhaug, J. Dittmer, M. Miller, and N. C. Nielsen. 2008. The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett. 582:2869-2874. PubMed
Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605-1612. PubMed
Pšenčík, J., G. F. W. Searle, J. Hala, and T. J. Schaafsma. 1994. Fluorescence-detected magnetic-resonance (FDMR) of green sulfur photosynthetic bacteria Chlorobium sp. Photosynth. Res. 40:1-10. PubMed
Pšenčík, J., Y. Z. Ma, J. B. Arellano, J. Garcia-Gil, A. R. Holzwarth, and T. Gillbro. 2002. Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynth. Res. 71:5-18. PubMed
Pšenčík, J., T. P. Ikonen, P. Laurinmäki, M. C. Merckel, S. J. Butcher, R. E. Serimaa, and R. Tuma. 2004. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 87:1165-1172. PubMed PMC
Pšenčík, J., J. B. Arellano, T. P. Ikonen, C. M. Borrego, P. A. Laurinmäki, S. J. Butcher, R. E. Serimaa, and R. Tuma. 2006. Internal structure of chlorosomes from brown-colored Chlorobium species and the role of carotenoids in their assembly. Biophys. J. 91:1433-1440. PubMed PMC
Sakuragi, Y., N. U. Frigaard, K. Shimada, and K. Matsuura. 1999. Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. BBA Bioenerg. 1413:172-180. PubMed
Schmidt, K., M. Maarzahl, and F. Mayer. 1980. Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl. Arch. Microbiol. 127:87-97.
Sprague, S. G., L. A. Staehelin, M. J. Dibartolomeis, and R. C. Fuller. 1981. Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J. Bacteriol. 147:1021-1031. PubMed PMC
Staehelin, L. A., J. R. Golecki, R. C. Fuller, and G. Drews. 1978. Visualization of the supramolecular architecture of chlorosome (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch. Microbiol. 119:269-277.
Staehelin, L. A., J. R. Golecki, and G. Drews. 1980. Supramolecular organization of chlorosome (Chlorobium vesicles) and of their membrane attachment site in Chlorobium limicola. Biochim. Biophys. Acta 589:30-45. PubMed
Wilkins, M. H. F., A. E. Blaurock, and D. M. Engelman. 1971. Bilayer structure in membranes. Nat. New Biol. 230:72-76. PubMed
Xin, Y. Y., S. Lin, G. A. Montaño, and R. E. Blankenship. 2005. Purification and characterization of the B808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus. Photosynth. Res. 86:155-163. PubMed
Young, A., and G. Britton. 1993. Carotenoids in photosynthesis. Chapman & Hall, London, United Kingdom.
Structural and functional roles of carotenoids in chlorosomes