The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- alkoholy chemie MeSH
- anizotropie MeSH
- bakteriochlorofyly chemie metabolismus MeSH
- buněčné struktury metabolismus MeSH
- Chlorobium metabolismus MeSH
- esterifikace MeSH
- hexany chemie MeSH
- kvarterní struktura proteinů MeSH
- radiační rozptyl MeSH
- rentgenové záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkoholy MeSH
- bakteriochlorofyly MeSH
- hexany MeSH
Chlorosomes from green photosynthetic bacteria are large photosynthetic antennae containing self-assembling aggregates of bacteriochlorophyll c, d, or e. The pigments within chlorosomes are organized in curved lamellar structures. Aggregates with similar optical properties can be prepared in vitro, both in polar as well as non-polar solvents. In order to gain insight into their structure we examined hexane-induced aggregates of purified bacteriochlorophyll c by X-ray scattering. The bacteriochlorophyll c aggregates exhibit scattering features that are virtually identical to those of native chlorosomes demonstrating that the self-assembly of these pigments is fully encoded in their chemical structure. Thus, the hexane-induced aggregates constitute an excellent model to study the effects of chemical structure on assembly. Using bacteriochlorophyllides transesterified with different alcohols we have established a linear relationship between the esterifying alcohol length and the lamellar spacing. The results provide a structural basis for lamellar spacing variability observed for native chlorosomes from different species. A plausible physiological role of this variability is discussed. The X-ray scattering also confirmed the assignments of peaks, which arise from the crystalline baseplate in the native chlorosomes.
Zobrazit více v PubMed
Biophys J. 2006 Aug 15;91(4):1433-40 PubMed
Photosynth Res. 1994 Jul;41(1):151-6 PubMed
Acc Chem Res. 2005 Aug;38(8):612-23 PubMed
Photochem Photobiol. 2004 Nov-Dec;80(3):572-8 PubMed
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8525-30 PubMed
Photosynth Res. 1994 Jul;41(1):53-65 PubMed
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):790-5 PubMed
Langmuir. 2008 Mar 4;24(5):2035-41 PubMed
FEBS Lett. 2007 Nov 27;581(28):5435-9 PubMed
Photochem Photobiol. 2000 Nov;72(5):669-75 PubMed
Biophys J. 2007 Jul 15;93(2):620-8 PubMed
Photosynth Res. 1994 Jul;41(1):211-23 PubMed
Biochemistry. 2002 Apr 2;41(13):4358-70 PubMed
Biophys J. 2004 Aug;87(2):1165-72 PubMed
Photochem Photobiol. 2008 Sep-Oct;84(5):1187-94 PubMed
FEBS Lett. 2008 Aug 20;582(19):2869-74 PubMed
Photosynth Res. 1996 Feb;47(2):157-65 PubMed
J Bacteriol. 2009 Nov;191(21):6701-8 PubMed
Photosynth Res. 2002;71(1-2):5-18 PubMed
Photosynth Res. 1996 Oct;50(1):41-59 PubMed
Photosynth Res. 2008 Feb-Mar;95(2-3):183-9 PubMed
Low-temperature spectroscopy of bacteriochlorophyll c aggregates
Structural and functional roles of carotenoids in chlorosomes