Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly

. 2006 Aug 15 ; 91 (4) : 1433-40. [epub] 20060526

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16731553
Odkazy

PubMed 16731553
PubMed Central PMC1518626
DOI 10.1529/biophysj.106.084228
PII: S0006-3495(06)71854-9
Knihovny.cz E-zdroje

Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioides and Chl. phaeobacteroides) containing BChl e as the main pigment. This suggests that the lamellar model is universal among green sulfur bacteria. In contrast to green-colored Chl. tepidum, chlorosomes from the brown-colored species often contain domains of lamellar aggregates that may help them to survive in extremely low light conditions. We suggest that carotenoids are localized between the lamellar planes and drive lamellar assembly by augmenting hydrophobic interactions. A model for chlorosome assembly, which accounts for the role of carotenoids and secondary BChl homologs, is presented.

Zobrazit více v PubMed

Blankenship, R. E., and K. Matsuura. 2003. Antenna complexes from green photosynthetic bacteria. In Light Harvesting Antennas in Photosynthesis. B. R. Green, and W. W. Parson, editors. Kluwer Academic Publisher, Dordrecht. 195–217.

Frigaard, N. U., and D. A. Bryant. 2004. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch. Microbiol. 182:265–276. PubMed

Staehelin, L. A., J. R. Golecki, R. C. Fuller, and G. Drews. 1978. Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch. Microbiol. 119:269–277.

Staehelin, L. A., J. R. Golecki, and G. Drews. 1980. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim. Biophys. Acta. 589:30–45. PubMed

Psencik, J., T. P. Ikonen, P. Laurinmäki, M. C. Merckel, S. J. Butcher, R. E. Serimaa, and R. Tuma. 2004. Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 87:1165–1172. PubMed PMC

Hohmann-Marriott, M. F., R. E. Blankenship, and R. W. Roberson. 2005. The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth. Res. 86:145–154. PubMed

Liaaen-Jensen, S. 1965. Bacterial carotenoids. XVIII. Aryl-carotenes from Phaeobium. Acta Chem. Scand. 19:1025–1030. PubMed

Francke, C., and J. Amesz. 1997. Isolation and pigment composition of the antenna system of four species of green sulfur bacteria. Photosynth. Res. 52:137–146.

Glaeser, J., L. Bañera, H. Rutters, and J. Overmann. 2002. Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch. Microbiol. 177:475–485. PubMed

Klinger, P., J. B. Arellano, F. E. Vacha, J. Hala, and J. Psencik. 2004. Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes. Photochem. Photobiol. 80:572–578. PubMed

Arellano, J. B., J. Psencik, C. M. Borrego, Y. Z. Ma, R. Guyoneaud, J. Garcia-Gil, and T. Gillbro. 2000. The effect of carotenoid biosynthesis inhibition on the organisation and function of chlorosomes from Chlorobium phaeobacteroides CL1401. Photochem. Photobiol. 71:715–723. PubMed

Arellano, J. B., C. M. Borrego, A. Martinez-Planells, and L. J. Garcia-Gil. 2001. Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides. Arch. Microbiol. 175:226–233. PubMed

Brune, D. C., T. Nozawa, and R. E. Blankenship. 1987. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry. 26:8644–8652. PubMed

Trüper, H. G., and N. Pfennig. 1992. The family Chlorobiaceae. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer, editors. Springer-Verlag, Berlin. 3583–3592.

Frigaard, N. U., K. Matsuura, M. Hirota, M. Miller, and R. P. Cox. 1998. Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth. Res. 58:81–90.

Borrego, C. M., and L. J. Garcia-Gil. 1994. Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth. Res. 41:157–163. PubMed

Oelze, J. 1985. Analysis of bacteriochlorophylls. Methods Microbiol. 18:257–284.

Sauer, K., J. R. Lindsay-Smith, and A. J. Schultz. 1986. The dimerization of chlorophyll a, chlorophyll b, and bacteriochlorophyll in solution. J. Am. Chem. Soc. 88:2681–2688.

Borrego, C. M., J. B. Arellano, C. A. Abellà, T. Gillbro, and L. J. Garcia-Gil. 1999. The molar extinction coefficient of bacteriochlorophyll e and the pigment stoichiometry in Chlorobium phaeobacteroides. Photosynth. Res. 60:257–264.

Britton, G. 1995. UV/visible spectroscopy. In Carotenoids, Vol. 1B: Spectroscopy. G. Britton, S. Liaaen-Jensen, and H. Pfander, editors. Birkhäuser, Basel. 13–62.

Martinez-Planells, A., J. B. Arellano, C. M. Borrego, C. Lopez-Iglesias, F. Gich, and J. Garcia-Gil. 2002. Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth. Res. 71:83–90. PubMed

Repeta, D. J., D. J. Simpson, B. B. Jørgensen, and H. W. Jannasch. 1989. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the black-sea. Nature. 342:69–72. PubMed

Overmann, J., H. Cypionka, and N. Pfennig. 1992. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol. Oceanogr. 37:150–155.

Airs, R. L., C. M. Borrego, L. J. Garcia-Gil, and B. J. Keely. 2001. Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynth. Res. 70:221–230. PubMed

Guyoneaud, R., C. M. Borrego, A. Martinez-Planells, E. T. Buitenhuis, and L. J. Garcia-Gil. 2001. Light responses in the green sulfur bacterium Prosthecochloris aestuarii: Changes in prosthecae length, ultrastructure, and antenna pigment composition. Arch. Microbiol. 176:278–284. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...