Quaternary Benzophenanthridine Alkaloids Act as Smac Mimetics and Overcome Resistance to Apoptosis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MUNI/A/1393/2022
Ministry of Education Youth and Sports
PubMed
37895085
PubMed Central
PMC10607862
DOI
10.3390/ijms242015405
PII: ijms242015405
Knihovny.cz E-resources
- Keywords
- Smac mimetic drug resistance, apoptosis, benzophenanthridine alkaloids, cIAP, cancer, cell death, chelerythrine, sanguinarine,
- MeSH
- Alkaloids * pharmacology metabolism MeSH
- Apoptosis * MeSH
- Benzophenanthridines pharmacology MeSH
- Caspase 3 metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alkaloids * MeSH
- Benzophenanthridines MeSH
- Caspase 3 MeSH
Defects in cell death signaling pathways are one of the hallmarks of cancer and can lead to resistance to conventional therapy. Natural products are promising compounds that can overcome this resistance. In the present study we studied the effect of six quaternary benzophenanthridine alkaloids (QBAs), sanguinarine, chelerythrine, sanguirubine, chelirubine, sanguilutine, and chelilutine, on Jurkat leukemia cells, WT, and cell death deficient lines derived from them, CASP3/7/6-/- and FADD-/-, and on solid tumor, human malignant melanoma, A375 cells. We demonstrated the ability of QBAs to overcome the resistance of these deficient cells and identified a novel mechanism for their action. Sanguinarine and sanguirubine completely and chelerythrine, sanguilutine, and chelilutine partially overcame the resistance of CASP3/7/6-/- and FADD-/- cells. By detection of cPARP, a marker of apoptosis, and pMLKL, a marker of necroptosis, we proved the ability of QBAs to induce both these cell deaths (bimodal cell death) with apoptosis preceding necroptosis. We identified the new mechanism of the cell death induction by QBAs, the downregulation of the apoptosis inhibitors cIAP1 and cIAP2, i.e., an effect similar to that of Smac mimetics.
See more in PubMed
Bai L., Smith D.C., Wang S. Small-Molecule SMAC Mimetics as New Cancer Therapeutics. Pharmacol. Ther. 2014;144:82–95. doi: 10.1016/j.pharmthera.2014.05.007. PubMed DOI PMC
Ramakrishnan V., Painuly U., Kimlinger T., Haug J., Rajkumar S.V., Kumar S. Inhibitor of Apoptosis Proteins as Therapeutic Targets in Multiple Myeloma. Leukemia. 2014;28:1519–1528. doi: 10.1038/leu.2014.2. PubMed DOI PMC
Houghton P.J., Kang M.H., Reynolds C.P., Morton C.L., Kolb E.A., Gorlick R., Keir S.T., Carol H., Lock R., Maris J.M., et al. Initial Testing (Stage 1) of LCL161, a SMAC Mimetic, by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer. 2012;58:636–639. doi: 10.1002/pbc.23167. PubMed DOI PMC
West A.C., Martin B.P., Andrews D.A., Hogg S.J., Banerjee A., Grigoriadis G., Johnstone R.W., Shortt J. The SMAC Mimetic, LCL-161, Reduces Survival in Aggressive MYC-Driven Lymphoma While Promoting Susceptibility to Endotoxic Shock. Oncogenesis. 2016;5:e216. doi: 10.1038/oncsis.2016.26. PubMed DOI PMC
Galluzzi L., Kepp O., Chan F.K.-M., Kroemer G. Necroptosis: Mechanisms and Relevance to Disease. Annu. Rev. Pathol. 2017;12:103–130. doi: 10.1146/annurev-pathol-052016-100247. PubMed DOI PMC
Fulda S. Tumor Resistance to Apoptosis. Int. J. Cancer. 2009;124:511–515. doi: 10.1002/ijc.24064. PubMed DOI
Petersen S.L., Peyton M., Minna J.D., Wang X. Overcoming Cancer Cell Resistance to Smac Mimetic Induced Apoptosis by Modulating CIAP-2 Expression. Proc. Natl. Acad. Sci. USA. 2010;107:11936–11941. doi: 10.1073/pnas.1005667107. PubMed DOI PMC
Zielińska S., Jezierska-Domaradzka A., Wójciak-Kosior M., Sowa I., Junka A., Matkowski A.M. Greater Celandine’s Ups and Downs−21 Centuries of Medicinal Uses of Chelidonium Majus from the Viewpoint of Today’s Pharmacology. Front. Pharmacol. 2018;9:299. doi: 10.3389/fphar.2018.00299. PubMed DOI PMC
Slaninova I., Pencikova K., Urbanova J., Slanina J., Taborska E. Antitumour Activities of Sanguinarine and Related Alkaloids. Phytochem. Rev. 2014;13:51–68. doi: 10.1007/s11101-013-9290-8. DOI
Singh N., Sharma B. Toxicological Effects of Berberine and Sanguinarine. Front. Mol. Biosci. 2018;5:21. doi: 10.3389/fmolb.2018.00021. PubMed DOI PMC
Chen N., Qi Y., Ma X., Xiao X., Liu Q., Xia T., Xiang J., Zeng J., Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front. Pharmacol. 2022;13:906301. doi: 10.3389/fphar.2022.906301. PubMed DOI PMC
Roberta Gaziano G.M., Martino Tony Miele P.S.-V. Antitumor Effects of the Benzophenanthridine Alkaloid Sanguinarine: Evidence and Perspectives. World J. Gastrointest. Oncol. 2016;8:30–39. doi: 10.4251/wjgo.v8.i1.30. PubMed DOI PMC
Jarosova P., Paroulek P., Rajecky M., Rajecka V., Taborska E., Eritja R., Avino A., Mazzini S., Gargallo R., Taborsky P. Naturally Occurring Quaternary Benzo[c]Phenanthridine Alkaloids Selectively Stabilize G-Quadruplexes. Phys. Chem. Chem. Phys. 2018;20:21772–21782. doi: 10.1039/C8CP02681E. PubMed DOI
Herbert J.M., Augereau J.M., Gleye J., Maffrand J.P. Chelerythrine Is a Potent and Specific Inhibitor of Protein Kinase C. Biochem. Biophys. Res. Commun. 1990;172:993–999. doi: 10.1016/0006-291X(90)91544-3. PubMed DOI
Ansari K.M., Das M. Skin Tumor Promotion by Argemone Oil/Alkaloid in Mice: Evidence for Enhanced Cell Proliferation, Ornithine Decarboxylase, Cyclooxygenase-2 and Activation of MAPK/NF-KappaB Pathway. Food Chem. Toxicol. 2010;48:132–138. doi: 10.1016/j.fct.2009.09.029. PubMed DOI
Lee J.S., Jung W.-K., Jeong M.H., Yoon T.R., Kim H.K. Sanguinarine Induces Apoptosis of HT-29 Human Colon Cancer Cells via the Regulation of Bax/Bcl-2 Ratio and Caspase-9-Dependent Pathway. Int. J. Toxicol. 2012;31:70–77. doi: 10.1177/1091581811423845. PubMed DOI
Choi W.Y., Jin C.-Y., Han M.H., Kim G.-Y., Kim N.D., Lee W.H., Kim S.-K., Choi Y.H. Sanguinarine Sensitizes Human Gastric Adenocarcinoma AGS Cells to TRAIL-Mediated Apoptosis via down-Regulation of AKT and Activation of Caspase-3. Anticancer Res. 2009;29:4457–4465. PubMed
Zhang Z., Guo Y., Zhang J., Wei X. Induction of Apoptosis by Chelerythrine Chloride through Mitochondrial Pathway and Bcl-2 Family Proteins in Human Hepatoma SMMC-7721 Cell. Arch. Pharm. Res. 2011;34:791–800. doi: 10.1007/s12272-011-0513-5. PubMed DOI
Zhang Z., Guo Y., Zhang L., Zhang J., Wei X. Chelerythrine Chloride from Macleaya Cordata Induces Growth Inhibition and Apoptosis in Human Gastric Cancer BGC-823 Cells. Acta Pharm. Sin. B. 2012;5:464–471. doi: 10.1016/j.apsb.2011.12.013. DOI
Chan S.-L., Lee M.C., Tan K.O., Yang L.-K., Lee A.S.Y., Flotow H., Fu N.Y., Butler M.S., Soejarto D.D., Buss A.D., et al. Identification of Chelerythrine as an Inhibitor of BclXL Function. J. Biol. Chem. 2003;278:20453–20456. doi: 10.1074/jbc.C300138200. PubMed DOI
Slaninova I., Slunska Z., Sinkora J., Vlkova M., Taborska E. Screening of Minor Benzo(c)Phenanthridine Alkaloids for Antiproliferative and Apoptotic Activities. Pharm. Biol. 2007;45:131–139. doi: 10.1080/13880200601113099. DOI
Hammerova J., Uldrijan S., Taborska E., Slaninova I. Benzo[c]Phenanthridine Alkaloids Exhibit Strong Anti-Proliferative Activity in Malignant Melanoma Cells Regardless of Their P53 Status. J. Dermatol. Sci. 2011;62:22–35. doi: 10.1016/j.jdermsci.2011.01.006. PubMed DOI
Hammerova J., Uldrijan S., Taborska E., Vaculova A.H., Slaninova I. Necroptosis Modulated by Autophagy Is a Predominant Form of Melanoma Cell Death Induced by Sanguilutine. Biol. Chem. 2012;393:647–658. doi: 10.1515/hsz-2011-0279. PubMed DOI
Slaninova I., Taborska E., Bochorakova H., Slanina J. Interaction of Benzo[c]Phenanthridine and Protoberberine Alkaloids with Animal and Yeast Cells. Cell Biol. Toxicol. 2001;17:51–63. doi: 10.1023/A:1010907231602. PubMed DOI
Slunska Z., Gelnarova E., Hammerova J., Taborska E., Slaninova I. Effect of Quaternary Benzo[c]Phenanthridine Alkaloids Sanguilutine and Chelilutine on Normal and Cancer Cells. Toxicol. Vitro. 2010;24:697–706. doi: 10.1016/j.tiv.2010.01.012. PubMed DOI
McComb S., Aguade-Gorgorio J., Harder L., Marovca B., Cario G., Eckert C., Schrappe M., Stanulla M., von Stackelberg A., Bourquin J.-P., et al. Activation of Concurrent Apoptosis and Necroptosis by SMAC Mimetics for the Treatment of Refractory and Relapsed ALL. Sci. Transl. Med. 2016;8:339ra70. doi: 10.1126/scitranslmed.aad2986. PubMed DOI
Mrkvova Z., Portesova M., Slaninova I. Loss of FADD and Caspases Affects the Response of T-Cell Leukemia Jurkat Cells to Anti-Cancer Drugs. Int. J. Mol. Sci. 2021;22:2702. doi: 10.3390/ijms22052702. PubMed DOI PMC
Hanahan D., Weinberg R.A. Hallmarks of Cancer: The next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Darding M., Feltham R., Tenev T., Bianchi K., Benetatos C., Silke J., Meier P. Molecular Determinants of Smac Mimetic Induced Degradation of CIAP1 and CIAP2. Cell Death Differ. 2011;18:1376–1386. doi: 10.1038/cdd.2011.10. PubMed DOI PMC
Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Molecular Targets and Anticancer Potential of Sanguinarine-a Benzophenanthridine Alkaloid. Phytomedicine. 2017;34:143–153. doi: 10.1016/j.phymed.2017.08.006. PubMed DOI
Croaker A., Davis A., Carroll A., Liu L., Myers S.P. Understanding of Black Salve Toxicity by Multi-Compound Cytotoxicity Assays. BMC Complement. Med. Ther. 2022;22:247. doi: 10.1186/s12906-022-03721-y. PubMed DOI PMC
Urbanová J., Lubal P., Slaninová I., Táborská E., Táborský P. Fluorescence Properties of Selected Benzo[c]Phenantridine Alkaloids and Studies of Their Interaction with CT DNA. Anal. Bioanal. Chem. 2009;394:997–1002. doi: 10.1007/s00216-009-2601-7. PubMed DOI
Hussain A.R., Al-Jomah N.A., Siraj A.K., Manogaran P., Al-Hussein K., Abubaker J., Platanias L.C., Al-Kuraya K.S., Uddin S. Sanguinarine-Dependent Induction of Apoptosis in Primary Effusion Lymphoma Cells. Cancer Res. 2007;67:3888–3897. doi: 10.1158/0008-5472.CAN-06-3764. PubMed DOI
Cheng W., Wang L., Zhang R., Du P., Yang B., Zhuang H., Tang B., Yao C., Yu M., Wang Y., et al. Regulation of Protein Kinase C Inactivation by Fas-Associated Protein with Death Domain. J. Biol. Chem. 2012;287:26126–26135. doi: 10.1074/jbc.M112.342170. PubMed DOI PMC
Taborska E., Veznik F., Slavikova L., Slavik J. Alkaloids of Papaveraceae. 67. Quaternary Alkaloids of 3 Species of Dicranostigma Hook-F Et Thoms. Collect. Czech. Chem. Commun. 1978;43:1108–1112. doi: 10.1135/cccc19781108. DOI
Slavik J., Slavikova L. Alkaloide Der Mohngewachse (Papaveraceae). 17. Uber Neue Alkaloide Aus Sanguinaria-Canadensis L. Collect. Czech. Chem. Commun. 1960;25:1667–1675. doi: 10.1135/cccc19601667. DOI
Slavik J., Dolejs L., Hanus V., Cross A. Alkaloids of Papaveraceae. 40. Chelirubine Chelilutine Sanguirubine and Sanguilutine. Mass and Nuclear Magnetic Resonance Spectra of Benzophenanthridine Alkaloids. Collect. Czech. Chem. Commun. 1968;33:1619. doi: 10.1135/cccc19681619. DOI
Slanina J., Páchniková G., Carnecká M., Porubová Koubíková L., Adámková L., Humpa O., Smejkal K., Slaninová I. Identification of Key Structural Characteristics of Schisandra Chinensis Lignans Involved in P-Glycoprotein Inhibition. J. Nat. Prod. 2014;77:2255–2263. doi: 10.1021/np500521v. PubMed DOI