Nuclear gamma-tubulin during acentriolar plant mitosis
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10715328
PubMed Central
PMC139842
DOI
10.1105/tpc.12.3.433
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro chemie MeSH
- buněčný cyklus MeSH
- centrioly MeSH
- Fabaceae chemie metabolismus MeSH
- fluorescenční protilátková technika MeSH
- konfokální mikroskopie MeSH
- léčivé rostliny MeSH
- mitóza * MeSH
- rostliny chemie metabolismus MeSH
- tubulin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- tubulin MeSH
Neither the molecular mechanism by which plant microtubules nucleate in the cytoplasm nor the organization of plant mitotic spindles, which lack centrosomes, is well understood. Here, using immunolocalization and cell fractionation techniques, we provide evidence that gamma-tubulin, a universal component of microtubule organizing centers, is present in both the cytoplasm and the nucleus of plant cells. The amount of gamma-tubulin in nuclei increased during the G(2) phase, when cells are synchronized or sorted for particular phases of the cell cycle. gamma-Tubulin appeared on prekinetochores before preprophase arrest caused by inhibition of the cyclin-dependent kinase and before prekinetochore labeling of the mitosis-specific phosphoepitope MPM2. The association of nuclear gamma-tubulin with chromatin displayed moderately strong affinity, as shown by its release after DNase treatment and by using extraction experiments. Subcellular compartmentalization of gamma-tubulin might be an important factor in the organization of plant-specific microtubule arrays and acentriolar mitotic spindles.
Zobrazit více v PubMed
Akashi, T., Yoon, Y., and Oakley, B.R. (1997). Characterization of γ-tubulin complexes in PubMed
Bajer, A.S., and Mole-Bajer, J.M. (1986). Reorganization of microtubules in endosperm cells and cell fragments of the higher plant PubMed PMC
Bajer, A., and Ostergen, G. (1961). Centromere-like behaviour of non-centromeric bodies. I. Neo-centric activity in chromosome arms at mitosis. Hereditas 47 563–598.
Binarová, P., Cihaliková, J., and Dole PubMed
Binarová, P., Hause, B., Dole
Binarová, P., Dole PubMed
Bögre, L., Jonak, C., Mink, M., Meskiene, I., Traas, J., Ha, D.T.C., Swoboda, I., Plank, C., Wagner, E., Heberle-Bors, E., and Hirt, H. (1996). Developmental and cell cycle regulation of alfalfa PubMed PMC
Bonnacorsi, S., Giansanti, M.G., and Gatti, M. (1998). Spindle self-organization and cytokinesis during male meiosis in PubMed PMC
Brunet, S., Polanski, Z., Verlhac, M.H., Kubiak, J., and Maro, B. (1998). Bipolar meiotic spindle formation without chromatin. Curr. Biol. 8 1231–1234. PubMed
Chan, A., and Cande, W.Z. (1998). Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J. Cell Sci. 111 3508–3515. PubMed
Curtenaz, S., Wright, M., and Hackman, K. (1997). Localization of γ-tubulin in the mitotic and meiotic nuclei of
Davis, F.M., Tsao, T.Y., Fowler, S.K., and Rao, P.N. (1983). Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. USA 80 2926–2930. PubMed PMC
Dawe, R.K., Reed, L.M., Yu, H., Muszynski, M.G., and Hiatt, E.N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11 1227–1238. PubMed PMC
De Saint Phalle, B., and Sullivan, W. (1998). Spindle assembly and mitosis without centrosomes in parthenogenetic PubMed PMC
Detraves, C., Mazarguil, H., Lajoie-Mazenc, I., Julian, M., Raynaud-Messina, B., and Wright, M. (1997). Protein complexes containing γ-tubulin are present in mammalian brain microtubule protein preparations. Cell Motil. Cytoskeleton 36 179–189. PubMed
Dole PubMed
Dráber, P., Dráberová, E., Linhartová, I., and Viklic PubMed
Dráber, P., Dráberová, E., and Viklic PubMed
Havlíček, L., Hanuš, J., Veseĺy, J., Leclerc, S., Meijer, L., Shaw, G., and Strnad, M. (1997). Cytokinin-derived cyclin-dependent kinase inhibitors: Synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J. Med. Chem. 40 408–412. PubMed
Heald, R., Tournebize, C., Blank, T., Sandantzopoulos, R., Becker, P., Hyman, A.R., and Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in PubMed
Heald, R., Tournebize, C., Habermann, A., Karsenti, E., and Hyman, A. (1997). Spindle assembly in PubMed PMC
Houben, A., Guttenbach, W., Kres, W., Pich, U., Schubert, I., and Schid, M. (1995). Immunostaining and interphase arrangement of field bean kinetochores. Chromosoma Res. 3 27–31. PubMed
Hyman, A., and Karsenti, E. (1998). The role of nucleation in patterning microtubule networks. J. Cell Sci. 111 2077–2083. PubMed
Jeng, R., and Sterns, T. (1999). γ-Tubulin complexes: Size does matter. Trends Cell Biol. 9 339–342. PubMed
Joshi, H.C., and Palevitz, B.A. (1996). γ-Tubulin and microtubule organization in plants. Trends Cell Biol. 6 41–44. PubMed
Joshi, H.C., McNamara, L., and Cleveland, D.W. (1992). γ-Tubulin is a centrosomal protein required for cell cycle–dependent microtubule nucleation. Nature 356 80–83. PubMed
Karpen, G.H., and Endow, S.A. (1998). Meiosis: Chromosome behaviour and spindle dynamics. In Dynamics of Cell Division, S.A. Endow and D.M. Glover, eds (Oxford, UK: Oxford University Press), pp. 205–247.
Kirschner, M., and Mitchinson, T. (1986). Beyond self assembly: From microtubules to morphogenesis. Cell 45 329–342. PubMed
Knop, M., and Schiebel, E. (1997). Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16 6985–6995. PubMed PMC
Kube-Granderath, E., and Schliwa, M. (1997). Unusual distribution of γ-tubulin in the giant fresh water amoeba PubMed
Liu, B., Marc, J., Joshi, H.C., and Palevitz, B.A. (1993). γ-Tubulin–related protein associated with microtubule arrays of higher plants in cell cycle–dependent manner. J. Cell Sci. 104 1217–1228. PubMed
Liu, B., Joshi, H.C., and Palevitz, B.A. (1995). Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs. Cell Motil. Cytoskeleton 31 113–129. PubMed
Mazia, D. (1984). Centrosomes and mitotic poles. Exp. Cell Res. 153 1–15. PubMed
McDonald, A.R., Liu, B., Joshi, H.C., and Palevitz, B.A. (1993). γ-Tubulin is associated with cortical–microtubule organizing zone in the developing guard cells of PubMed
Moritz, M., Zheng, Y., Alberts, B.M., and Oegema, K. (1998). Recruitment of the γ-tubulin complex to PubMed PMC
Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). γ-Tubulin in mammalian cells: The centrosomal and cytosolic forms. J. Cell Sci. 109 875–887. PubMed
Nováková, M., Dráberová, E., Schurman, W., Czihak, G., Viklic PubMed
Oakley, B.R., Oakley, E., Yoon, Y., and Jung, M.K. (1990). γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in PubMed
Oegema, K., Wiese, C., Martin, O.C., Miligan, R.A., Iwamatzu, A., Mitchinson, T.J., and Zheng, Y. (1999). Characterization of two related PubMed PMC
Palevitz, B.A. (1993). Morphological plasticity of the mitotic apparatus in plants and its developmental consequences. Plant Cell 5 1001–1009. PubMed PMC
Pereira, G., Knop, M., and Schiebel, E. (1998). Spc98 directs the yeast γ-tubulin complex into the nucleus and is subject to cell cycle–dependent phosphorylation on the nuclear site of the spindle body. Mol. Biol. Cell 9 775–793. PubMed PMC
Smertenko, A., Blume, Y., Viklic PubMed
Smirnova, E.A., and Bajer, A.S. (1998). Early stages of spindle formation and independence of chromosome and microtubule cycles in PubMed
Stearns, T., and Kirschner, M.W. (1994). In vitro reconstitution of centrosome assembly and function: The central role of γ-tubulin. Cell 76 623–637. PubMed
Stoppin, V., Lambert, A.M., and Vantard, M. (1996). Plant microtubule–associated proteins (MAPs) affect microtubule nucleation and growth at the plant nuclei and mammalian centrosomes. Eur. J. Cell Biol. 69 11–23. PubMed
Stoppin-Mellet, V., Petr, C., Buendia, B., Karsenti, E., and Lambert, A. (1999). Tobacco BY-2 cell-free extracts induce the recovery of microtubule nucleating activity of inactivated mammalian centrosomes. Biochim. Biophys. Acta 1449 101–106. PubMed
Sullivan, K.F. (1998). A moveable feast: The centromere–kinetochore complex in cell division. In Dynamics of Cell Division, S.A. Endow and D.M. Glover, eds (Oxford, UK: Oxford University Press), pp. 123–165.
Vorobjev, I.A., Svitkina, T.M., and Borisy, G. (1997). Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sci. 110 2635–2645. PubMed
Wolf, K.W., and Joshi, H.C. (1996). Microtubule organization and distribution of γ-tubulin in male meiosis of Lepidoptera. Mol. Reprod. Dev. 45 547–549. PubMed
Yu, H., Muszynski, M.G., and Dawe, K.R. (1999). The maize homologue of the cell cycle checkpoint MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145 425–435. PubMed PMC
Yvon, A.M., and Wadsworth, P. (1997). Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J. Cell Sci. 110 2391–2401. PubMed
Zhang, D., and Nicklas, R.B. (1995). The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. J. Cell Biol. 129 1287–1300. PubMed PMC
Zheng, Y., Jung, M.K., and Oakley, B.R. (1991). γ-Tubulin is present in PubMed
Zheng, Y., Wong, M.L., and Mitchinson, T. (1995). Nucleation of microtubule assembly by a γ-tubulin–containing ring complex. Nature 378 578–583. PubMed
γ-Tubulin in microtubule nucleation and beyond
Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway
Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed?
Regulation of microtubule nucleation mediated by γ-tubulin complexes
Intranuclear accumulation of plant tubulin in response to low temperature
Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes