Nuclear gamma-tubulin during acentriolar plant mitosis

. 2000 Mar ; 12 (3) : 433-42.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid10715328

Neither the molecular mechanism by which plant microtubules nucleate in the cytoplasm nor the organization of plant mitotic spindles, which lack centrosomes, is well understood. Here, using immunolocalization and cell fractionation techniques, we provide evidence that gamma-tubulin, a universal component of microtubule organizing centers, is present in both the cytoplasm and the nucleus of plant cells. The amount of gamma-tubulin in nuclei increased during the G(2) phase, when cells are synchronized or sorted for particular phases of the cell cycle. gamma-Tubulin appeared on prekinetochores before preprophase arrest caused by inhibition of the cyclin-dependent kinase and before prekinetochore labeling of the mitosis-specific phosphoepitope MPM2. The association of nuclear gamma-tubulin with chromatin displayed moderately strong affinity, as shown by its release after DNase treatment and by using extraction experiments. Subcellular compartmentalization of gamma-tubulin might be an important factor in the organization of plant-specific microtubule arrays and acentriolar mitotic spindles.

Zobrazit více v PubMed

Akashi, T., Yoon, Y., and Oakley, B.R. (1997). Characterization of γ-tubulin complexes in Aspergilus nidulans and detection of putative γ-tubulin interacting proteins. Cell Motil. Cytoskeleton 37 149–158. PubMed

Bajer, A.S., and Mole-Bajer, J.M. (1986). Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J. Cell Biol. 102 263–281. PubMed PMC

Bajer, A., and Ostergen, G. (1961). Centromere-like behaviour of non-centromeric bodies. I. Neo-centric activity in chromosome arms at mitosis. Hereditas 47 563–598.

Binarová, P., Cihaliková, J., and Dolez̆el, J. (1993). Localization of MPM-2 recognized phosphoproteins and tubulin during cell cycle progression in synchronized Vicia faba root meristem cells. Cell Biol. Int. 9 847–856. PubMed

Binarová, P., Hause, B., Dolez̆el, J., and Dráber, P. (1998. a). Association of γ-tubulin with kinetochores in Vicia faba meristem cells. Plant J. 14 751–757.

Binarová, P., Dolez̆el, J., Heberle-Bors, E., Dráber, P., Strnad, M., and Bögre, L. (1998. b). Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinase leads to abnormal spindle formation. Plant J. 16 697–707. PubMed

Bögre, L., Jonak, C., Mink, M., Meskiene, I., Traas, J., Ha, D.T.C., Swoboda, I., Plank, C., Wagner, E., Heberle-Bors, E., and Hirt, H. (1996). Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin. Plant Cell 8 417–428. PubMed PMC

Bonnacorsi, S., Giansanti, M.G., and Gatti, M. (1998). Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol. 142 751–761. PubMed PMC

Brunet, S., Polanski, Z., Verlhac, M.H., Kubiak, J., and Maro, B. (1998). Bipolar meiotic spindle formation without chromatin. Curr. Biol. 8 1231–1234. PubMed

Chan, A., and Cande, W.Z. (1998). Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J. Cell Sci. 111 3508–3515. PubMed

Curtenaz, S., Wright, M., and Hackman, K. (1997). Localization of γ-tubulin in the mitotic and meiotic nuclei of Euplotes octocarinatus. Eur. J. Protistol. 33 1–12.

Davis, F.M., Tsao, T.Y., Fowler, S.K., and Rao, P.N. (1983). Monoclonal antibodies to mitotic cells. Proc. Natl. Acad. Sci. USA 80 2926–2930. PubMed PMC

Dawe, R.K., Reed, L.M., Yu, H., Muszynski, M.G., and Hiatt, E.N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11 1227–1238. PubMed PMC

De Saint Phalle, B., and Sullivan, W. (1998). Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J. Cell Biol. 141 1383–1391. PubMed PMC

Detraves, C., Mazarguil, H., Lajoie-Mazenc, I., Julian, M., Raynaud-Messina, B., and Wright, M. (1997). Protein complexes containing γ-tubulin are present in mammalian brain microtubule protein preparations. Cell Motil. Cytoskeleton 36 179–189. PubMed

Dolez̆el, J., Cihalíková, J., and Lucretti, S. (1992). A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188 93–98. PubMed

Dráber, P., Dráberová, E., Linhartová, I., and Viklicḱy, V. (1989). Differences in the exposure of C- and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J. Cell Sci. 92 519–528. PubMed

Dráber, P., Dráberová, E., and Viklicḱy, V. (1991). Immunostaining of human spermatozoa with tubulin domain-specific monoclonal antibodies. Recognition of a unique epitope in the sperm head. Histochemistry 195 519–524. PubMed

Havlíček, L., Hanuš, J., Veseĺy, J., Leclerc, S., Meijer, L., Shaw, G., and Strnad, M. (1997). Cytokinin-derived cyclin-dependent kinase inhibitors: Synthesis and cdc2 inhibitory activity of olomoucine and related compounds. J. Med. Chem. 40 408–412. PubMed

Heald, R., Tournebize, C., Blank, T., Sandantzopoulos, R., Becker, P., Hyman, A.R., and Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 385 420–425. PubMed

Heald, R., Tournebize, C., Habermann, A., Karsenti, E., and Hyman, A. (1997). Spindle assembly in Xenopus egg extracts: Respective role of centrosomes and microtubule self-organization. J. Cell Biol. 138 615–628. PubMed PMC

Houben, A., Guttenbach, W., Kres, W., Pich, U., Schubert, I., and Schid, M. (1995). Immunostaining and interphase arrangement of field bean kinetochores. Chromosoma Res. 3 27–31. PubMed

Hyman, A., and Karsenti, E. (1998). The role of nucleation in patterning microtubule networks. J. Cell Sci. 111 2077–2083. PubMed

Jeng, R., and Sterns, T. (1999). γ-Tubulin complexes: Size does matter. Trends Cell Biol. 9 339–342. PubMed

Joshi, H.C., and Palevitz, B.A. (1996). γ-Tubulin and microtubule organization in plants. Trends Cell Biol. 6 41–44. PubMed

Joshi, H.C., McNamara, L., and Cleveland, D.W. (1992). γ-Tubulin is a centrosomal protein required for cell cycle–dependent microtubule nucleation. Nature 356 80–83. PubMed

Karpen, G.H., and Endow, S.A. (1998). Meiosis: Chromosome behaviour and spindle dynamics. In Dynamics of Cell Division, S.A. Endow and D.M. Glover, eds (Oxford, UK: Oxford University Press), pp. 205–247.

Kirschner, M., and Mitchinson, T. (1986). Beyond self assembly: From microtubules to morphogenesis. Cell 45 329–342. PubMed

Knop, M., and Schiebel, E. (1997). Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16 6985–6995. PubMed PMC

Kube-Granderath, E., and Schliwa, M. (1997). Unusual distribution of γ-tubulin in the giant fresh water amoeba Reticulomyxa filosa. Eur. J. Cell Biol. 72 287–296. PubMed

Liu, B., Marc, J., Joshi, H.C., and Palevitz, B.A. (1993). γ-Tubulin–related protein associated with microtubule arrays of higher plants in cell cycle–dependent manner. J. Cell Sci. 104 1217–1228. PubMed

Liu, B., Joshi, H.C., and Palevitz, B.A. (1995). Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs. Cell Motil. Cytoskeleton 31 113–129. PubMed

Mazia, D. (1984). Centrosomes and mitotic poles. Exp. Cell Res. 153 1–15. PubMed

McDonald, A.R., Liu, B., Joshi, H.C., and Palevitz, B.A. (1993). γ-Tubulin is associated with cortical–microtubule organizing zone in the developing guard cells of Alium cepa L. Planta 191 357–361. PubMed

Moritz, M., Zheng, Y., Alberts, B.M., and Oegema, K. (1998). Recruitment of the γ-tubulin complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142 775–786. PubMed PMC

Moudjou, M., Bordes, N., Paintrand, M., and Bornens, M. (1996). γ-Tubulin in mammalian cells: The centrosomal and cytosolic forms. J. Cell Sci. 109 875–887. PubMed

Nováková, M., Dráberová, E., Schurman, W., Czihak, G., Viklicḱy, V., and Dráber, P. (1996). γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskeleton 33 38–51. PubMed

Oakley, B.R., Oakley, E., Yoon, Y., and Jung, M.K. (1990). γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergilus nidulans. Cell 61 1289–1301. PubMed

Oegema, K., Wiese, C., Martin, O.C., Miligan, R.A., Iwamatzu, A., Mitchinson, T.J., and Zheng, Y. (1999). Characterization of two related Drososphila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144 721–733. PubMed PMC

Palevitz, B.A. (1993). Morphological plasticity of the mitotic apparatus in plants and its developmental consequences. Plant Cell 5 1001–1009. PubMed PMC

Pereira, G., Knop, M., and Schiebel, E. (1998). Spc98 directs the yeast γ-tubulin complex into the nucleus and is subject to cell cycle–dependent phosphorylation on the nuclear site of the spindle body. Mol. Biol. Cell 9 775–793. PubMed PMC

Smertenko, A., Blume, Y., Viklicḱy, V., and Dráber, P. (1997). Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies. Eur. J. Cell Biol. 72 104–112. PubMed

Smirnova, E.A., and Bajer, A.S. (1998). Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemantus endosperm. Cell Motil. Cytoskeleton 40 22–37. PubMed

Stearns, T., and Kirschner, M.W. (1994). In vitro reconstitution of centrosome assembly and function: The central role of γ-tubulin. Cell 76 623–637. PubMed

Stoppin, V., Lambert, A.M., and Vantard, M. (1996). Plant microtubule–associated proteins (MAPs) affect microtubule nucleation and growth at the plant nuclei and mammalian centrosomes. Eur. J. Cell Biol. 69 11–23. PubMed

Stoppin-Mellet, V., Petr, C., Buendia, B., Karsenti, E., and Lambert, A. (1999). Tobacco BY-2 cell-free extracts induce the recovery of microtubule nucleating activity of inactivated mammalian centrosomes. Biochim. Biophys. Acta 1449 101–106. PubMed

Sullivan, K.F. (1998). A moveable feast: The centromere–kinetochore complex in cell division. In Dynamics of Cell Division, S.A. Endow and D.M. Glover, eds (Oxford, UK: Oxford University Press), pp. 123–165.

Vorobjev, I.A., Svitkina, T.M., and Borisy, G. (1997). Cytoplasmic assembly of microtubules in cultured cells. J. Cell Sci. 110 2635–2645. PubMed

Wolf, K.W., and Joshi, H.C. (1996). Microtubule organization and distribution of γ-tubulin in male meiosis of Lepidoptera. Mol. Reprod. Dev. 45 547–549. PubMed

Yu, H., Muszynski, M.G., and Dawe, K.R. (1999). The maize homologue of the cell cycle checkpoint MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145 425–435. PubMed PMC

Yvon, A.M., and Wadsworth, P. (1997). Non-centrosomal microtubule formation and measurement of minus end microtubule dynamics in A498 cells. J. Cell Sci. 110 2391–2401. PubMed

Zhang, D., and Nicklas, R.B. (1995). The impact of chromosomes and centrosomes on spindle assembly as observed in living cells. J. Cell Biol. 129 1287–1300. PubMed PMC

Zheng, Y., Jung, M.K., and Oakley, B.R. (1991). γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with centrosome. Cell 65 817–823. PubMed

Zheng, Y., Wong, M.L., and Mitchinson, T. (1995). Nucleation of microtubule assembly by a γ-tubulin–containing ring complex. Nature 378 578–583. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

γ-Tubulin in microtubule nucleation and beyond

. 2022 ; 10 () : 880761. [epub] 20220901

γ-Tubulin Complexes and Fibrillar Arrays: Two Conserved High Molecular Forms with Many Cellular Functions

. 2021 Apr 01 ; 10 (4) : . [epub] 20210401

Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway

. 2019 Apr 05 ; 9 (1) : 5725. [epub] 20190405

Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed?

. 2019 Mar 19 ; 8 (3) : . [epub] 20190319

Regulation of microtubule nucleation mediated by γ-tubulin complexes

. 2017 May ; 254 (3) : 1187-1199. [epub] 20170110

Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells

. 2013 Nov ; 64 (14) : 4575-87. [epub] 20130904

Intranuclear accumulation of plant tubulin in response to low temperature

. 2006 May ; 227 (2-4) : 185-96. [epub] 20060503

Gamma-tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis

. 2006 May ; 18 (5) : 1199-212. [epub] 20060407

Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes

. 2003 Feb ; 15 (2) : 465-80.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...