γ-Tubulin in microtubule nucleation and beyond

. 2022 ; 10 () : 880761. [epub] 20220901

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36158181

Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.

Zobrazit více v PubMed

Akhmanova A., Kapitein L. C. (2022). Mechanisms of microtubule organization in differentiated animal cells. Nat. Rev. Mol. Cell Biol. 23, 541–558. 10.1038/s41580-022-00473-y PubMed DOI

Aldaz H., Rice L. M., Stearns T., Agard D. A. (2005). Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435, 523–527. 10.1038/nature03586 PubMed DOI

Alvarado-Kristensson M., Rodriguez M. J., Silio V., Valpuesta J. M., Carrera A. C. (2009). SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat. Cell Biol. 11, 1081–1092. 10.1038/ncb1921 PubMed DOI

Andersen J. S., Lyon C. E., Fox A. H., Leung A. K. L., Lam Y. W., Steen H., et al. (2002). Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11. 10.1016/s0960-9822(01)00650-9 PubMed DOI

Arquint C., Gabryjonczyk A. M., Nigg E. A. (2014). Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, e20130464. 10.1098/rstb.2013.0464 PubMed DOI PMC

Bahtz R., Seidler J., Arnold M., Haselmann-Weiss U., Antony C., Lehmann W. D., et al. (2012). GCP6 is a substrate of Plk4 and required for centriole duplication. J. Cell Sci. 125, 486–496. 10.1242/jcs.093930 PubMed DOI

Baumgart J., Kirchner M., Redemann S., Bond A., Woodruff J., Verbavatz J. M., et al. (2019). Soluble tubulin is significantly enriched at mitotic centrosomes. J. Cell Biol. 218, 3977–3985. 10.1083/jcb.201902069 PubMed DOI PMC

Biedermann S., Harashima H., Chen P., Heese M., Bouyer D., Sofroni K., et al. (2017). The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis . EMBO J. 36, 1279–1297. 10.15252/embj.201694571 PubMed DOI PMC

Binarová P., Cenklová V., Hause B., Kubátová E., Lysák M., Doležel J., et al. (2000). Nuclear γ-tubulin during acentriolar plant mitosis. Plant Cell 12, 433–442. 10.1105/tpc.12.3.433 PubMed DOI PMC

Binarová P., Cenklová V., Procházková J., Doskočilová A., Volc J., Vrlík M., et al. (2006). γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis . Plant Cell 18, 1199–1212. 10.1105/tpc.105.038364 PubMed DOI PMC

Bouckson-Castaing V., Moudjou M., Ferguson D. J., Mucklow S., Belkaid Y., Milon G., et al. (1996). Molecular characterisation of ninein, a new coiled-coil protein of the centrosome. J. Cell Sci. 109, 179–190. 10.1242/jcs.109.1.179 PubMed DOI

Bouissou A., Verollet C., Sousa A., Sampaio P., Wright M., Sunkel C. E., et al. (2009). γ-Tubulin ring complexes regulate microtubule plus end dynamics. J. Cell Biol. 187, 327–334. 10.1083/jcb.200905060 PubMed DOI PMC

Brilot A. F., Lyon A. S., Zelter A., Viswanath S., Maxwell A., MacCoss M. J., et al. (2021). CM1-driven assembly and activation of yeast γ-tubulin small complex underlies microtubule nucleation. eLife 10, e65168. 10.7554/eLife.65168 PubMed DOI PMC

Černohorská M., Sulimenko V., Hájková Z., Sulimenko T., Sládková V., Vinopal S., et al. (2016). GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. Biochim. Biophys. Acta 1863, 1282–1297. 10.1016/j.bbamcr.2016.03.016 PubMed DOI

Chi W., Wang G., Xin G., Jiang Q., Zhang C. (2021). PLK4-phosphorylated NEDD1 facilitates cartwheel assembly and centriole biogenesis initiations. J. Cell Biol. 220, e202002151. 10.1083/jcb.202002151 PubMed DOI PMC

Chi Y., Welcker M., Hizli A. A., Posakony J. J., Aebersold R., Clurman B. E. (2008). Identification of CDK2 substrates in human cell lysates. Genome Biol. 9, R149. 10.1186/gb-2008-9-10-r149 PubMed DOI PMC

Choi Y. K., Liu P., Sze S. K., Dai C., Qi R. Z. (2010). CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095. 10.1083/jcb.201007030 PubMed DOI PMC

Chumová J., Kourová H., Trögelová L., Daniel G., Binarová P. (2021). γ-Tubulin complexes and fibrillar arrays: two conserved high molecular forms with many cellular functions. Cells 10, e776. 10.3390/cells10040776 PubMed DOI PMC

Chumová J., Kourová H., Trögelová L., Halada P., Binarová P. (2019). Microtubular and nuclear functions of γ-tubulin: Are they LINCed? Cells 8, e259. 10.3390/cells8030259 PubMed DOI PMC

Chumová J., Trögelová L., Kourová H., Volc J., Sulimenko V., Halada P., et al. (2018). γ-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks. Biochim. Biophys. Acta. Mol. Cell Res. 1865, 734–748. 10.1016/j.bbamcr.2018.02.009 PubMed DOI

Consolati T., Locke J., Roostalu J., Chen Z. A., Gannon J., Asthana J., et al. (2020). Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell 53, 603–617. 10.1016/j.devcel.2020.04.019 PubMed DOI PMC

Corvaisier M., Alvarado-Kristensson M. (2020). Non-canonical functions of the γ-tubulin meshwork in the regulation of the nuclear architecture. Cancers (Basel) 12, e3102. 10.3390/cancers12113102 PubMed DOI PMC

Corvaisier M., Zhou J., Malycheva D., Cornella N., Chioureas D., Gustafsson N. M. S., et al. (2021). The γ-tubulin meshwork assists in the recruitment of PCNA to chromatin in mammalian cells. Commun. Biol. 4, e767. 10.1038/s42003-021-02280-1 PubMed DOI PMC

Delgehyr N., Sillibourne J., Bornens M. (2005). Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565–1575. 10.1242/jcs.02302 PubMed DOI

Détraves C., Mazarguil H., Lajoie-Mazenc I., Julian M., Raynaud-Messina B., Wright M. (1997). Protein complexes containing γ-tubulin are present in mammalian brain microtubule protein preparations. Cell Motil. Cytoskelet. 36, 179–189. 10.1002/(SICI)1097-0169(1997)36:2<179:AID-CM7>3.0.CO;2-4 PubMed DOI

Dráber P., Dráberová E. (2021). Dysregulation of microtubule nucleating proteins in cancer cells. Cancers (Basel) 13, e5638. 10.3390/cancers13225638 PubMed DOI PMC

Dráberová E., D'Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., et al. (2015). Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 74, 723–742. 10.1097/NEN.0000000000000212 PubMed DOI

Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D'Agostino L., et al. (2017). Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 31, 1828–1846. 10.1096/fj.201600846RR PubMed DOI

Dryková D., Sulimenko V., Cenklová V., Volc J., Dráber P., Binarová P. (2003). Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15, 465–480. 10.1105/tpc.007005 PubMed DOI PMC

Edgerton-Morgan H., Oakley B. R. (2012). γ-Tubulin plays a key role in inactivating APC/CCdh1 at the G1-S boundary. J. Cell Biol. 198, 785–791. 10.1083/jcb.201203115 PubMed DOI PMC

Ehlén Å., Rosselló C. A., von Stedingk K., Höög G., Nilsson E., Pettersson H. M., et al. (2012). Tumors with nonfunctional retinoblastoma protein are killed by reduced γ-tubulin levels. J. Biol. Chem. 287, 17241–17247. 10.1074/jbc.M112.357038 PubMed DOI PMC

Eklund G., Lang S., Glindre J., Ehlén A., Alvarado-Kristensson M. (2014). The nuclear localization of γ-tubulin is regulated by SadB-mediated phosphorylation. J. Biol. Chem. 289, 21360–21373. 10.1074/jbc.M114.562389 PubMed DOI PMC

Farina F., Gaillard J., Guerin C., Coute Y., Sillibourne J., Blanchoin L., et al. (2016). The centrosome is an actin-organizing centre. Nat. Cell Biol. 18, 65–75. 10.1038/ncb3285 PubMed DOI PMC

Farina F., Ramkumar N., Brown L., Samandar Eweis D., Anstatt J., Waring T., et al. (2019). Local actin nucleation tunes centrosomal microtubule nucleation during passage through mitosis. EMBO J. 38, e99843. 10.15252/embj.201899843 PubMed DOI PMC

Fong K. K., Zelter A., Graczyk B., Hoyt J. M., Riffle M., Johnson R., et al. (2018). Novel phosphorylation states of the yeast spindle pole body. Biol. Open 7, bio033647. 10.1242/bio.033647 PubMed DOI PMC

Fong K. W., Choi Y. K., Rattner J. B., Qi R. Z. (2008). CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol. Biol. Cell 19, 115–125. 10.1091/mbc.e07-04-0371 PubMed DOI PMC

Gombos L., Neuner A., Berynskyy M., Fava L. L., Wade R. C., Sachse C., et al. (2013). GTP regulates the microtubule nucleation activity of γ-tubulin. Nat. Cell Biol. 15, 1317–1327. 10.1038/ncb2863 PubMed DOI

Gomez-Ferreria M. A., Bashkurov M., Helbig A. O., Larsen B., Pawson T., Gingras A. C., et al. (2012). Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly. J. Cell Sci. 125, 3745–3751. 10.1242/jcs.105130 PubMed DOI

Gomez-Ferreria M. A., Rath U., Buster D. W., Chanda S. K., Caldwell J. S., Rines D. R., et al. (2007). Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960–1966. 10.1016/j.cub.2007.10.019 PubMed DOI

Goshima G., Mayer M., Zhang N., Stuurman N., Vale R. D. (2008). Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421–429. 10.1083/jcb.200711053 PubMed DOI PMC

Gunawardane R. N., Martin O. C., Cao K., Zhang L., Dej K., Iwamatsu A., et al. (2000). Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 151, 1513–1524. 10.1083/jcb.151.7.1513 PubMed DOI PMC

Gunzelmann J., Ruthnick D., Lin T. C., Zhang W., Neuner A., Jakle U., et al. (2018). The microtubule polymerase Stu2 promotes oligomerization of the γ-TuSC for cytoplasmic microtubule nucleation. eLife 7, e39932. 10.7554/eLife.39932 PubMed DOI PMC

Gupta H., Rajeev R., Sasmal R., Radhakrishnan R. M., Anand U., Chandran H., et al. (2020). SAS-6 Association with γ-tubulin ring complex is required for centriole duplication in human cells. Curr. Biol. 30, 2395–2403. 10.1016/j.cub.2020.04.036 PubMed DOI

Hanafusa H., Kedashiro S., Tezuka M., Funatsu M., Usami S., Toyoshima F., et al. (2015). PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat. Cell Biol. 17, 1024–1035. 10.1038/ncb3204 PubMed DOI

Haren L., Remy M. H., Bazin I., Callebaut I., Wright M., Merdes A. (2006). NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505–515. 10.1083/jcb.200510028 PubMed DOI PMC

Haren L., Stearns T., Lüders J. (2009). Plk1-dependent recruitment of γ-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS One 4, e5976. 10.1371/journal.pone.0005976 PubMed DOI PMC

Hegemann B., Hutchins J. R., Hudecz O., Novatchkova M., Rameseder J., Sykora M. M., et al. (2011). Systematic phosphorylation analysis of human mitotic protein complexes. Sci. Signal. 4, rs12. 10.1126/scisignal.2001993 PubMed DOI PMC

Henty-Ridilla J. L., Goode B. L. (2015). Global resource distribution: allocation of actin building blocks by profilin. Dev. Cell 32, 5–6. 10.1016/j.devcel.2014.12.022 PubMed DOI

Höög G., Zarrizi R., von Stedingk K., Jonsson K., Alvarado-Kristensson M. (2011). Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression. FASEB J. 25, 3815–3827. 10.1096/fj.11-187484 PubMed DOI PMC

Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., et al. (2012). Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell. Physiol. 227, 367–382. 10.1002/jcp.22772 PubMed DOI

Hori A., Morand A., Ikebe C., Frith D., Snijders A. P., Toda T. (2015). The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation. Biochem. Biophys. Res. Commun. 468, 39–45. 10.1016/j.bbrc.2015.10.169 PubMed DOI PMC

Horio T., Oakley B. R. (1994). Human γ-tubulin functions in fission yeast. J. Cell Biol. 126, 1465–1473. 10.1083/jcb.126.6.1465 PubMed DOI PMC

Horvath B. M., Kourova H., Nagy S., Nemeth E., Magyar Z., Papdi C., et al. (2017). Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J. 36, 1261–1278. 10.15252/embj.201694561 PubMed DOI PMC

Hsu L. C., Doan T. P., White R. L. (2001). Identification of a γ-tubulin-binding domain in BRCA1. Cancer Res. 61, 7713–7718. PMID: 11691781. PubMed

Hubert T., Vandekerckhove J., Gettemans J. (2011). Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem. Biophys. Res. Commun. 414, 240–245. 10.1016/j.bbrc.2011.09.064 PubMed DOI

Inclán Y. F., Nogales E. (2001). Structural models for the self-assembly and microtubule interactions of δ-delta- and ε-tubulin. J. Cell Sci. 114, 413–422. 10.1242/jcs.114.2.413 PubMed DOI

Inoue D., Obino D., Pineau J., Farina F., Gaillard J., Guerin C., et al. (2019). Actin filaments regulate microtubule growth at the centrosome. EMBO J. 38, e99630. 10.15252/embj.201899630 PubMed DOI PMC

Janke C., Magiera M. M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21, 307–326. 10.1038/s41580-020-0214-3 PubMed DOI

Joachimiak E., Jerka-Dziadosz M., Krzemien-Ojak L., Waclawek E., Jedynak K., Urbanska P., et al. (2018). Multiple phosphorylation sites on γ-tubulin are essential and contribute to the biogenesis of basal bodies in Tetrahymena . J. Cell. Physiol. 233, 8648–8665. 10.1002/jcp.26742 PubMed DOI

Johmura Y., Soung N. K., Park J. E., Yu L. R., Zhou M., Bang J. K., et al. (2011). Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc. Natl. Acad. Sci. U. S. A. 108, 11446–11451. 10.1073/pnas.1106223108 PubMed DOI PMC

Joukov V., De Nicolo A. (2018). Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci. Signal. 11, eaar4195. 10.1126/scisignal.aar4195 PubMed DOI

Kállai B. M., Kourová H., Chumová J., Papdi C., Trögelová L., Kofroňová O., et al. (2020). γ-Tubulin interacts with E2F transcription factors to regulate proliferation and endocycling in Arabidopsis. J. Exp. Bot. 71, 1265–1277. 10.1093/jxb/erz498 PubMed DOI

Karlsson R., Dráber P. (2021). Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J. Cell. Physiol. 236, 7256–7265. 10.1002/jcp.30379 PubMed DOI

Katsetos C. D., Dráberová E., Legido A., Dráber P. (2009). Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. γ-Tubulin. J. Cell. Physiol. 221, 514–520. 10.1002/jcp.21884 PubMed DOI

Keating T. J., Borisy G. G. (2000). Immunostructural evidence for the template mechanism of microtubule nucleation. Nat. Cell Biol. 2, 352–357. 10.1038/35014045 PubMed DOI

Keck J. M., Jones M. H., Wong C. C., Binkley J., Chen D., Jaspersen S. L., et al. (2011). A cell cycle phosphoproteome of the yeast centrosome. Science 332, 1557–1561. 10.1126/science.1205193 PubMed DOI PMC

King B. R., Moritz M., Kim H., Agard D. A., Asbury C. L., Davis T. N. (2020). XMAP215 and γ-tubulin additively promote microtubule nucleation in purified solutions. Mol. Biol. Cell 31, 2187–2194. 10.1091/mbc.E20-02-0160 PubMed DOI PMC

Klebanovych A., Vinopal S., Dráberová E., Sládková V., Sulimenko T., Sulimenko V., et al. (2022). C53 interacting with UFM1-protein ligase 1 regulates microtubule nucleation in response to ER stress. Cells 11, e555. 10.3390/cells11030555 PubMed DOI PMC

Kollman J. M., Greenberg C. H., Li S., Moritz M., Zelter A., Fong K. K., et al. (2015). Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132–137. 10.1038/nsmb.2953 PubMed DOI PMC

Kollman J. M., Merdes A., Mourey L., Agard D. A. (2011). Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721. 10.1038/nrm3209 PubMed DOI PMC

Kollman J. M., Polka J. K., Zelter A., Davis T. N., Agard D. A. (2010). Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466, 879–882. 10.1038/nature09207 PubMed DOI PMC

Kollman J. M., Zelter A., Muller E. G., Fox B., Rice L. M., Davis T. N., et al. (2008). The structure of the γ-tubulin small complex: Implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell 19, 207–215. 10.1091/mbc.e07-09-0879 PubMed DOI PMC

Kufer T. A., Sillje H. H., Korner R., Gruss O. J., Meraldi P., Nigg E. A. (2002). Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623. 10.1083/jcb.200204155 PubMed DOI PMC

Kukharskyy V., Sulimenko V., Macurek L., Sulimenko T., Dráberová E., Dráber P. (2004). Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp. Cell Res. 298, 218–228. 10.1016/j.yexcr.2004.04.016 PubMed DOI

Lawo S., Hasegan M., Gupta G. D., Pelletier L. (2012). Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158. 10.1038/ncb2591 PubMed DOI

Lee K., Rhee K. (2011). PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093–1101. 10.1083/jcb.201106093 PubMed DOI PMC

Leong S. L., Lynch E. M., Zou J., Tay Y. D., Borek W. E., Tuijtel M. W., et al. (2019). Reconstitution of microtubule nucleation in vitro reveals novel roles for Mzt1. Curr. Biol. 29, 2199–2207. 10.1016/j.cub.2019.05.058 PubMed DOI PMC

Lesca C., Germanier M., Raynaud-Messina B., Pichereaux C., Etievant C., Emond S., et al. (2005). DNA damage induce γ-tubulin-RAD51 nuclear complexes in mammalian cells. Oncogene 24, 5165–5172. 10.1038/sj.onc.1208723 PubMed DOI

Lin T. C., Gombos L., Neuner A., Sebastian D., Olsen J. V., Hrle A., et al. (2011). Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS ONE 6, e19700. 10.1371/journal.pone.0019700 PubMed DOI PMC

Lin T. C., Neuner A., Schiebel E. (2015). Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296–307. 10.1016/j.tcb.2014.12.002 PubMed DOI

Lindström L., Alvarado-Kristensson M. (2018). Characterization of γ-tubulin filaments in mammalian cells. Biochim. Biophys. Acta. Mol. Cell Res. 1865, 158–171. 10.1016/j.bbamcr.2017.10.008 PubMed DOI

Lindström L., Li T., Malycheva D., Kancharla A., Nilsson H., Vishnu N., et al. (2018). The GTPase domain of γ-tubulin is required for normal mitochondrial function and spatial organization. Commun. Biol. 1, 37. 10.1038/s42003-018-0037-3 PubMed DOI PMC

Linhartová I., Dráber P., Dráberová E., Viklický V. (1992). Immunological discrimination of β-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem. J. 288, 919–924. 10.1042/bj2880919 PubMed DOI PMC

Linhartová I., Novotná B., Sulimenko V., Dráberová E., Dráber P. (2002). γ-tubulin in chicken erythrocytes: changes in localization during cell differentiation and characterization of cytoplasmic complexes. Dev. Dyn. 223, 229–240. 10.1002/dvdy.10047 PubMed DOI

Liu B., Marc J., Joshi H. C., Palevitz B. A. (1993). A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J. Cell Sci. 104, 1217–1228. 10.1242/jcs.104.4.1217 PubMed DOI

Liu P., Choi Y. K., Qi R. Z. (2014). NME7 is a functional component of the γ-tubulin ring complex. Mol. Biol. Cell 25, 2017–2025. 10.1091/mbc.E13-06-0339 PubMed DOI PMC

Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., et al. (2020). Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578, 467–471. 10.1038/s41586-019-1896-6 PubMed DOI

Lüders J., Patel U. K., Stearns T. (2006). GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin mediated microtubule nucleation. Nat. Cell Biol. 8, 137–147. 10.1038/ncb1349 PubMed DOI

Ludueña R. F. (1993). Are tubulin isotypes functionally significant? Mol. Biol. Cell 4, 445–457. 10.1091/mbc.4.5.445 PubMed DOI PMC

Ludueña R. F. (2013). A hypothesis on the origin and evolution of tubulin. Int. Rev. Cell Mol. Biol. 302, 41–185. 10.1016/B978-0-12-407699-0.00002-9 PubMed DOI

Meunier S., Vernos I. (2016). Acentrosomal microtubule assembly in mitosis: the where, when, and how. Trends Cell Biol. 26, 80–87. 10.1016/j.tcb.2015.09.001 PubMed DOI

Mitchison T., Kirschner M. (1984). Dynamic instability of microtubule growth. Nature 312, 237–242. 10.1038/312237a0 PubMed DOI

Monfregola J., Napolitano G., D'Urso M., Lappalainen P., Ursini M. V. (2010). Functional characterization of Wiskott-Aldrich syndrome protein and scar homolog (WASH), a bi-modular nucleation-promoting factor able to interact with biogenesis of lysosome-related organelle subunit 2 (BLOS2) and γ-tubulin. J. Biol. Chem. 285, 16951–16957. 10.1074/jbc.M109.078501 PubMed DOI PMC

Moritz M., Braunfeld M. B., Guenebaut V., Heuser J., Agard D. A. (2000). Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2, 365–370. 10.1038/35014058 PubMed DOI

Moritz M., Braunfeld M. B., Sedat J. W., Alberts B., Agard D. A. (1995). Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640. 10.1038/378638a0 PubMed DOI

Nayak T., Edgerton-Morgan H., Horio T., Xiong Y., De Souza C. P., Osmani S. A., et al. (2010). γ-tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J. Cell Biol. 190, 317–330. 10.1083/jcb.201002105 PubMed DOI PMC

Nejedlá M., Klebanovych A., Sulimenko V., Sulimenko T., Dráberová E., Dráber P., et al. (2021). The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci. Alliance 4, e202000655. 10.26508/lsa.202000655 PubMed DOI PMC

Nogales E., Wang H. W. (2006). Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16, 221–229. 10.1016/j.sbi.2006.03.005 PubMed DOI

O'Rourke B. P., Gomez-Ferreria M. A., Berk R. H., Hackl A. M., Nicholas M. P., O'Rourke S. C., et al. (2014). Cep192 controls the balance of centrosome and non-centrosomal microtubules during interphase. PLoS One 9, e101001. 10.1371/journal.pone.0101001 PubMed DOI PMC

Oakley B. R., Paolillo V., Zheng Y. (2015). γ-Tubulin complexes in microtubule nucleation and beyond. Mol. Biol. Cell 26, 2957–2962. 10.1091/mbc.E14-11-1514 PubMed DOI PMC

Oakley C. E., Oakley B. R. (1989). Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans . Nature 338, 662–664. 10.1038/338662a0 PubMed DOI

Oegema K., Wiese C., Martin O. C., Milligan R. A., Iwamatsu A., Mitchison T. J., et al. (1999). Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733. 10.1083/jcb.144.4.721 PubMed DOI PMC

Ohashi T., Yamamoto T., Yamanashi Y., Ohsugi M. (2016). Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. FEBS Lett. 590, 1053–1063. 10.1002/1873-3468.12163 PubMed DOI

Ohta M., Zhao Z., Wu D., Wang S., Harrison J. L., Gomez-Cavazos J. S., et al. (2021). Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J. Cell Biol. 220, e202009083. 10.1083/jcb.202009083 PubMed DOI PMC

Ong S. T., Chalasani M. L. S., Fazil M., Prasannan P., Kizhakeyil A., Wright G. D., et al. (2018). Centrosome- and Golgi-localized protein kinase N-associated protein serves as a docking platform for protein kinase A signaling and microtubule nucleation in migrating T-cells. Front. Immunol. 9, e397. 10.3389/fimmu.2018.00397 PubMed DOI PMC

Oriolo A. S., Wald F. A., Canessa G., Salas P. J. (2007). GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. Mol. Biol. Cell 18, 781–794. 10.1091/mbc.e06-03-0201 PubMed DOI PMC

Pastuglia M., Azimzadeh J., Goussot M., Camilleri C., Belcram K., Evrard J. L., et al. (2006). γ-Tubulin is essential for microtubule organization and development in Arabidopsis . Plant Cell 18, 1412–1425. 10.1105/tpc.105.039644 PubMed DOI PMC

Paz J., Lüders J. (2018). Microtubule-organizing centers: towards a minimal parts list. Trends Cell Biol. 28, 176–187. 10.1016/j.tcb.2017.10.005 PubMed DOI

Petry S., Vale R. D. (2015). Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 17, 1089–1093. 10.1038/ncb3220 PubMed DOI

Pinyol R., Scrofani J., Vernos I. (2013). The role of NEDD1 phosphorylation by Aurora A in chromosomal microtubule nucleation and spindle function. Curr. Biol. 23, 143–149. 10.1016/j.cub.2012.11.046 PubMed DOI

Plessner M., Knerr J., Grosse R. (2019). Centrosomal Actin Assembly is required for proper mitotic spindle formation and chromosome congression. iScience 15, 274–281. 10.1016/j.isci.2019.04.022 PubMed DOI PMC

Pouchucq L., Lobos-Ruiz P., Araya G., Valpuesta J. M., Monasterio O. (2018). The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin. Biochim. Biophys. Acta. Proteins Proteom. 1866, 519–526. 10.1016/j.bbapap.2018.01.007 PubMed DOI

Rajeev R., Singh P., Asmita A., Anand U., Manna T. K. (2019). Aurora A site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing γ-tubulin ring complex. BMC Mol. Cell Biol. 20, 58. 10.1186/s12860-019-0242-z PubMed DOI PMC

Raynaud C., Nisa M. (2020). A conserved role for γ-tubulin as a regulator of E2F transcription factors. J. Exp. Bot. 71, 1199–1202. 10.1093/jxb/erz557 PubMed DOI

Redwine W. B., DeSantis M. E., Hollyer I., Htet Z. M., Tran P. T., Swanson S. K., et al. (2017). The human cytoplasmic dynein interactome reveals novel activators of motility. eLife 6, e28257. 10.7554/eLife.28257 PubMed DOI PMC

Rice L. M., Montabana E. A., Agard D. A. (2008). The lattice as allosteric effector: structural studies of αβ- and γ-tubulin clarify the role of GTP in microtubule assembly. Proc. Natl. Acad. Sci. U. S. A. 105, 5378–5383. 10.1073/pnas.0801155105 PubMed DOI PMC

Rice L. M., Moritz M., Agard D. A. (2021). Microtubules form by progressively faster tubulin accretion, not by nucleation-elongation. J. Cell Biol. 220, e202012079. 10.1083/jcb.202012079 PubMed DOI PMC

Roll-Mecak A. (2020). The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54, 7–20. 10.1016/j.devcel.2020.06.008 PubMed DOI PMC

Roostalu J., Surrey T. (2017). Microtubule nucleation: beyond the template. Nat. Rev. Mol. Cell Biol. 18, 702–710. 10.1038/nrm.2017.75 PubMed DOI

Rosselló C. A., Lindström L., Eklund G., Corvaisier M., Alvarado-Kristensson M. A. (2018). γ-Tubulin-γ-tubulin interactions as the basis for the formation of a meshwork. Int. J. Mol. Sci. 19, 3245. 10.3390/ijms19103245 PubMed DOI PMC

Sankaran S., Starita L. M., Groen A. C., Ko M. J., Parvin J. D. (2005). Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol. Cell. Biol. 25, 8656–8668. 10.1128/MCB.25.19.8656-8668.2005 PubMed DOI PMC

Santamaria A., Wang B., Elowe S., Malik R., Zhang F., Bauer M., et al. (2011). The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol. Cell. Proteomics 10, M110.004457. 10.1074/mcp.M110.004457 PubMed DOI PMC

Sawin K. E., Lourenco P. C., Snaith H. A. (2004). Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14, 763–775. 10.1016/j.cub.2004.03.042 PubMed DOI

Schaerer-Brodbeck C., Riezman H. (2003). Genetic and biochemical interactions between the Arp2/3 complex, Cmd1p, casein kinase II, and Tub4p in yeast. FEMS Yeast Res. 4, 37–49. 10.1016/S1567-1356(03)00110-7 PubMed DOI

Schweizer N., Haren L., Dutto I., Viais R., Lacasa C., Merdes A., et al. (2021). Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat. Commun. 12, e6042. 10.1038/s41467-021-26252-5 PubMed DOI PMC

Schweizer N., Lüders J. (2021). From tip to toe - dressing centrioles in γTuRC. J. Cell Sci. 134, jcs258397. 10.1242/jcs.258397 PubMed DOI

Scrofani J., Sardon T., Meunier S., Vernos I. (2015). Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr. Biol. 25, 131–140. 10.1016/j.cub.2014.11.025 PubMed DOI

Sheng L., Li J., Rao S., Yang Z., Huang Y. (2021). Cyclin-dependent kinase 5 regulatory subunit associated protein 3: Potential functions and implications for development and disease. Front. Oncol. 11, 760429. 10.3389/fonc.2021.760429 PubMed DOI PMC

Shu H. B., Joshi H. C. (1995). γ-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells. J. Cell Biol. 130, 1137–1147. 10.1083/jcb.130.5.1137 PubMed DOI PMC

Shulist K., Yen E., Kaitna S., Leary A., Decterov A., Gupta D., et al. (2017). Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment. Sci. Rep. 7, 11398. 10.1038/s41598-017-11789-7 PubMed DOI PMC

Singh P., Thomas G. E., Gireesh K. K., Manna T. K. (2014). TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. J. Biol. Chem. 289, 31719–31735. 10.1074/jbc.M114.575100 PubMed DOI PMC

Starita L. M., Machida Y., Sankaran S., Elias J. E., Griffin K., Schlegel B. P., et al. (2004). BRCA1-dependent ubiquitination of γ-tubulin regulates centrosome number. Mol. Cell. Biol. 24, 8457–8466. 10.1128/MCB.24.19.8457-8466.2004 PubMed DOI PMC

Stearns T., Evans L., Kirschner M. (1991). γ-tubulin is a highly conserved component of the centrosome. Cell 65, 825–836. 10.1016/0092-8674(91)90390-k PubMed DOI

Stoimenov I., Helleday T. (2009). PCNA on the crossroad of cancer. Biochem. Soc. Trans. 37, 605–613. 10.1042/BST0370605 PubMed DOI

Sulimenko V., Hájková Z., Černohorská M., Sulimenko T., Sládková V., Dráberová L., et al. (2015). Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J. Immunol. 194, 4099–4111. 10.4049/jimmunol.1402459 PubMed DOI

Sulimenko V., Hájková Z., Klebanovych A., Dráber P. (2017). Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma 254, 1187–1199. 10.1007/s00709-016-1070-z PubMed DOI

Sulimenko V., Sulimenko T., Poznanovic S., Nechiporuk-Zloy V., Böhm J. K., Macůrek L., et al. (2002). Association of brain γ-tubulins with αβ-tubulin dimers. Biochem. J. 365, 889–895. 10.1042/BJ20020175 PubMed DOI PMC

Sztul E., Chen P. W., Casanova J. E., Cherfils J., Dacks J. B., Lambright D. G., et al. (2019). ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol. Biol. Cell 30, 1249–1271. 10.1091/mbc.E18-12-0820 PubMed DOI PMC

Takahashi M., Yamagiwa A., Nishimura T., Mukai H., Ono Y. (2002). Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245. 10.1091/mbc.e02-02-0112 PubMed DOI PMC

Thawani A., Kadzik R. S., Petry S. (2018). XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex. Nat. Cell Biol. 20, 575–585. 10.1038/s41556-018-0091-6 PubMed DOI PMC

Thawani A., Petry S. (2021). Molecular insight into how γ-TuRC makes microtubules. J. Cell Sci. 134, jcs245464. 10.1242/jcs.245464 PubMed DOI PMC

Thawani A., Rale M. J., Coudray N., Bhabha G., Stone H. A., Shaevitz J. W., et al. (2020). The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. eLife 9, e54253. 10.7554/eLife.54253 PubMed DOI PMC

Thirunavukarasou A., Govindarajalu G., Singh P., Bandi V., Muthu K., Baluchamy S. (2015). Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Mol. Cell. Biochem. 401, 219–228. 10.1007/s11010-014-2309-7 PubMed DOI

Ti S. C., Alushin G. M., Kapoor T. M. (2018). Human β-tubulin isotypes can regulate microtubule protofilament number and stability. Dev. Cell 47, 175–190. 10.1016/j.devcel.2018.08.014 PubMed DOI PMC

Tovey C. A., Conduit P. T. (2018). Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 62, 765–780. 10.1042/EBC20180028 PubMed DOI PMC

Tovey C. A., Tsuji C., Egerton A., Bernard F., Guichet A., de la Roche M., et al. (2021). Autoinhibition of Cnn binding to γ-TuRCs prevents ectopic microtubule nucleation and cell division defects. J. Cell Biol. 220, e202010020. 10.1083/jcb.202010020 PubMed DOI PMC

Tovey C. A., Tubman C. E., Hamrud E., Zhu Z., Dyas A. E., Butterfield A. N., et al. (2018). γ-TuRC heterogeneity revealed by analysis of Mozart1. Curr. Biol. 28, 2314–2323. 10.1016/j.cub.2018.05.044 PubMed DOI PMC

Tu H. Q., Qin X. H., Liu Z. B., Song Z. Q., Hu H. B., Zhang Y. C., et al. (2018). Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis. Nat. Commun. 9, e5277. 10.1038/s41467-018-07664-2 PubMed DOI PMC

Turn R. E., East M. P., Prekeris R., Kahn R. A. (2020). The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol. Biol. Cell 31, 2070–2091. 10.1091/mbc.E20-01-0012 PubMed DOI PMC

Valenzuela A., Meservey L., Nguyen H., Fu M. M. (2020). Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol. 30, 792–804. 10.1016/j.tcb.2020.07.004 PubMed DOI

Vineethakumari C., Lüders J. (2022). Microtubule anchoring: attaching dynamic polymers to cellular structures. Front. Cell Dev. Biol. 10, e867870. 10.3389/fcell.2022.867870 PubMed DOI PMC

Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., et al. (2012). γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE 7, e29919. 10.1371/journal.pone.0029919 PubMed DOI PMC

Vogel J., Drapkin B., Oomen J., Beach D., Bloom K., Snyder M. (2001). Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 1, 621–631. 10.1016/s1534-5807(01)00073-9 PubMed DOI

Wang G. F., Dong Q., Bai Y., Gu J., Tao Q., Yue J., et al. (2022). c-Abl kinase-mediated phosphorylation of γ-tubulin promotes γ-tubulin ring complexes assembly and microtubule nucleation. J. Biol. Chem. 298, e101778. 10.1016/j.jbc.2022.101778 PubMed DOI PMC

Wang J., An H., Mayo M. W., Baldwin A. S., Yarbrough W. G. (2007). LZAP, a putative tumor suppressor, selectively inhibits NF-κB. Cancer Cell 12, 239–251. 10.1016/j.ccr.2007.07.002 PubMed DOI

Wang Z., Wu T., Shi L., Zhang L., Zheng W., Qu J. Y., et al. (2010). Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J. Biol. Chem. 285, 22658–22665. 10.1074/jbc.M110.105965 PubMed DOI PMC

Wieczorek M., Huang T. L., Urnavicius L., Hsia K. C., Kapoor T. M. (2020a). MZT proteins form multi-faceted structural modules in the γ-tubulin ring complex. Cell Rep. 31, e107791. 10.1016/j.celrep.2020.107791 PubMed DOI PMC

Wieczorek M., Urnavicius L., Ti S. C., Molloy K. R., Chait B. T., Kapoor T. M. (2020b). Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell 180, 165–175. 10.1016/j.cell.2019.12.007 PubMed DOI PMC

Wieczorek M., Ti S. C., Urnavicius L., Molloy K. R., Aher A., Chait B. T., et al. (2021). Biochemical reconstitutions reveal principles of human γ-TuRC assembly and function. J. Cell Biol. 220, e202009146. 10.1083/jcb.202009146 PubMed DOI PMC

Wiese C., Zheng Y. (2000). A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358–364. 10.1038/35014051 PubMed DOI

Wilkes O. R., Moore A. W. (2020). Distinct microtubule organizing center mechanisms combine to generate neuron polarity and arbor complexity. Front. Cell. Neurosci. 14, e594199. 10.3389/fncel.2020.594199 PubMed DOI PMC

Wise D. O., Krahe R., Oakley B. R. (2000). The γ-tubulin gene family in humans. Genomics 67, 164–170. 10.1006/geno.2000.6247 PubMed DOI

Wolff A., Denoulet P., Jeantet C. (1982). High level of tubulin microheterogeneity in the mouse brain. Neurosci. Lett. 31, 323–328. 10.1016/0304-3940(82)90041-6 PubMed DOI

Würtz M., Zupa E., Atorino E. S., Neuner A., Böhler A., Rahadian A. S., et al. (2022). Modular assembly of the principal microtubule nucleator γ-TuRC. Nat. Commun. 13, e473. 10.1038/s41467-022-28079-0 PubMed DOI PMC

Yin C., Lui E. S. W., Jiang T., Qi R. Z. (2021). Proteolysis of γ-tubulin small complex proteins is mediated by the ubiquitin-proteasome system. FEBS Lett. 595, 1987–1996. 10.1002/1873-3468.14146 PubMed DOI

Yuba-Kubo A., Kubo A., Hata M., Tsukita S. (2005). Gene knockout analysis of two γ-tubulin isoforms in mice. Dev. Biol. 282, 361–373. 10.1016/j.ydbio.2005.03.031 PubMed DOI

Zarrizi R., Menard J. A., Belting M., Massoumi R. (2014). Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 74, 6499–6508. 10.1158/0008-5472.CAN-14-0221 PubMed DOI

Zhang R., LaFrance B., Nogales E. (2018). Separating the effects of nucleotide and EB binding on microtubule structure. Proc. Natl. Acad. Sci. U. S. A. 115, E6191–E6200. 10.1073/pnas.1802637115 PubMed DOI PMC

Zhang S., Hernmerich P., Grosse F. (2007). Centrosomal localization of DNA damage checkpoint proteins. J. Cell. Biochem. 101, 451–465. 10.1002/jcb.21195 PubMed DOI

Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., et al. (2009). Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 122, 2240–2251. 10.1242/jcs.042747 PubMed DOI

Zhao Z. S., Lim J. P., Ng Y. W., Lim L., Manser E. (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol. Cell 20, 237–249. 10.1016/j.molcel.2005.08.035 PubMed DOI

Zheng Y., Alberts B., Mitchison T. (1995). Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583. 10.1038/378578a0 PubMed DOI

Zimmerman W. C., Sillibourne J., Rosa J., Doxsey S. J. (2004). Mitosis-specific anchoring of γ-tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657. 10.1091/mbc.e03-11-0796 PubMed DOI PMC

Zimmermann F., Serna M., Ezquerra A., Fernandez-Leiro R., Llorca O., Lüders J. (2020). Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Sci. Adv. 6, eabe0894. 10.1126/sciadv.abe0894 PubMed DOI PMC

Zupa E., Liu P., Würtz M., Schiebel E., Pfeffer S. (2021). The structure of the γ-TuRC: a 25-years-old molecular puzzle. Curr. Opin. Struct. Biol. 66, 15–21. 10.1016/j.sbi.2020.08.008 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...