Discovery of a 6-Aminobenzo[b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39296273
PubMed Central
PMC11406704
DOI
10.1021/acsptsci.4c00190
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
BIOCEV 1st Faculty of Medicine Charles University Prumyslova 595 Vestec 252 50 Czech Republic
Danish Cancer Institute Strandboulevarden 49 DK 2100 Copenhagen Denmark
Zobrazit více v PubMed
Gai C.; Harnor S. J.; Zhang S.; Cano C.; Zhuang C.; Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med. Chem. 2022, 13 (12), 1460–1475. 10.1039/d2md00216g. PubMed DOI PMC
Jackson P. A.; Widen J. C.; Harki D. A.; Brummond K. M. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J. Med. Chem. 2017, 60 (3), 839–885. 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC
Huang F.; Han X.; Xiao X.; Zhou J. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022, 27 (22), 7728.10.3390/molecules27227728. PubMed DOI PMC
Schust J.; Sperl B.; Hollis A.; Mayer T. U.; Berg T. S. Stattic: A Small-Molecule Inhibitor of STAT3 Activation and Dimerization. Chem. Biol. 2006, 13 (11), 1235–1242. 10.1016/j.chembiol.2006.09.018. PubMed DOI
Poria D. K.; Sheshadri N.; Balamurugan K.; Sharan S.; Sterneck E. The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression. J. Biol. Chem. 2021, 296, 100220.10.1074/jbc.RA120.016645. PubMed DOI PMC
Uchihara Y.; Ohe T.; Mashino T.; Kidokoro T.; Tago K.; Tamura H.; Funakoshi-Tago M. N-Acetyl cysteine prevents activities of STAT3 inhibitors, Stattic and BP-1–102 independently of its antioxidant properties. Pharmacol. Rep. 2019, 71 (6), 1067–1078. 10.1016/j.pharep.2019.05.021. PubMed DOI
Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646–674. 10.1016/j.cell.2011.02.013. PubMed DOI
Verhoeven Y.; Tilborghs S.; Jacobs J.; De Waele J.; Quatannens D.; Deben C.; Prenen H.; Pauwels P.; Trinh X. B.; Wouters A.; et al. The potential and controversy of targeting STAT family members in cancer. Semin. Cancer Biol. 2020, 60, 41–56. 10.1016/j.semcancer.2019.10.002. PubMed DOI
Bromberg J. F. Activation of STAT proteins and growth control. Bioessays 2001, 23 (2), 161–169. 10.1002/1521-1878(200102)23:2<161::AID-BIES1023>3.0.CO;2-0. PubMed DOI
Yu H.; Jove R. The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 2004, 4 (2), 97–105. 10.1038/nrc1275. PubMed DOI
Bromberg J. F.; Wrzeszczynska M. H.; Devgan G.; Zhao Y.; Pestell R. G.; Albanese C.; Darnell J. E. Jr. Stat3 as an oncogene. Cell 1999, 98 (3), 295–303. 10.1016/s0092-8674(00)81959-5. PubMed DOI
Wang H.-Q.; Man Q.-W.; Huo F.-Y.; Gao X.; Lin H.; Li S.-R.; Wang J.; Su F.-C.; Cai L.; Shi Y.; et al. STAT3 pathway in cancers: Past, present, and future. MedComm 2022, 3 (2), e12410.1002/mco2.124. PubMed DOI PMC
Hu Y.; Dong Z.; Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J. Exp. Clin. Cancer Res. 2024, 43 (1), 23.10.1186/s13046-024-02949-5. PubMed DOI PMC
Chen X.; Yang W.; Deng X.; Ye S.; Xiao W. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway. Mol. Vis. 2020, 26, 517–529. PubMed PMC
Steinman R. A.; Robinson A. R.; Feghali-Bostwick C. A. Antifibrotic effects of roscovitine in normal and scleroderma fibroblasts. PLoS One 2012, 7 (11), e4856010.1371/journal.pone.0048560. PubMed DOI PMC
Liebl M. C.; Hofmann T. G. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers 2022, 14 (19), 4549.10.3390/cancers14194549. PubMed DOI PMC
Vultur A.; Cao J.; Arulanandam R.; Turkson J.; Jove R.; Greer P.; Craig A.; Elliott B.; Raptis L. Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 2004, 23 (15), 2600–2616. 10.1038/sj.onc.1207378. PubMed DOI
von Manstein V.; Groner B. Tumor cell resistance against targeted therapeutics: the density of cultured glioma tumor cells enhances Stat3 activity and offers protection against the tyrosine kinase inhibitor canertinib. MedChemComm 2017, 8 (1), 96–102. 10.1039/C6MD00463F. PubMed DOI PMC
Di L.; Kerns E. H.; Fan K.; McConnell O. J.; Carter G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38 (3), 223–232. 10.1016/s0223-5234(03)00012-6. PubMed DOI
Park M. C.; Jeong H.; Son S. H.; Kim Y.; Han D.; Goughnour P. C.; Kang T.; Kwon N. H.; Moon H. E.; Paek S. H.; et al. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function. Cancer Res. 2016, 76 (5), 1044–1054. 10.1158/0008-5472.CAN-14-2611. PubMed DOI
Clark J.; Edwards S.; Feber A.; Flohr P.; John M.; Giddings I.; Crossland S.; Stratton M. R.; Wooster R.; Campbell C.; et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 2003, 22 (8), 1247–1252. 10.1038/sj.onc.1206247. PubMed DOI
Seim I.; Jeffery P. L.; Thomas P. B.; Nelson C. C.; Chopin L. K. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3 2017, 7 (6), 1731–1741. 10.1534/g3.117.039909. PubMed DOI PMC
Buettner R.; Corzano R.; Rashid R.; Lin J.; Senthil M.; Hedvat M.; Schroeder A.; Mao A.; Herrmann A.; Yim J.; et al. Alkylation of cysteine 468 in Stat3 defines a novel site for therapeutic development. ACS Chem. Biol. 2011, 6 (5), 432–443. 10.1021/cb100253e. PubMed DOI PMC
Heidelberger S.; Zinzalla G.; Antonow D.; Essex S.; Piku Basu B.; Palmer J.; Husby J.; Jackson P. J.; Rahman K. M.; Wilderspin A. F.; et al. Investigation of the protein alkylation sites of the STAT3:STAT3 inhibitor Stattic by mass spectrometry. Bioorg. Med. Chem. Lett. 2013, 23 (16), 4719–4722. 10.1016/j.bmcl.2013.05.066. PubMed DOI
Elmaci I. ˙.; Altinoz M. A.; Sari R.; Bolukbasi F. H. Phosphorylated Histone H3 (PHH3) as a Novel Cell Proliferation Marker and Prognosticator for Meningeal Tumors: A Short Review. Appl. Immunohistochem. Mol. Morphol. 2018, 26 (9), 627–631. 10.1097/PAI.0000000000000499. PubMed DOI
Park C. H.; Kim K. T. Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ. PLoS One 2012, 7 (9), e4430710.1371/journal.pone.0044307. PubMed DOI PMC
Dráberová E.; Sulimenko V.; Sulimenko T.; Böhm K. J.; Dráber P. Recovery of tubulin functions after freeze-drying in the presence of trehalose. Anal. Biochem. 2010, 397 (1), 67–72. 10.1016/j.ab.2009.10.016. PubMed DOI
Teng Y.; Ross J. L.; Cowell J. K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAK-STAT 2014, 3 (1), e2808610.4161/jkst.28086. PubMed DOI PMC
Chrienova Z.; Rysanek D.; Oleksak P.; Stary D.; Bajda M.; Reinis M.; Mikyskova R.; Novotny O.; Andrys R.; Skarka A.; et al. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front. Aging Neurosci. 2022, 14, 1048260.10.3389/fnagi.2022.1048260. PubMed DOI PMC
Coppe J. P.; Patil C. K.; Rodier F.; Sun Y.; Munoz D. P.; Goldstein J.; Nelson P. S.; Desprez P. Y.; Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6 (12), e30110.1371/journal.pbio.0060301. PubMed DOI PMC
Rayan A.; Raiyn J.; Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One 2017, 12 (11), e018792510.1371/journal.pone.0187925. PubMed DOI PMC
Cui W.; Aouidate A.; Wang S.; Yu Q.; Li Y.; Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front. Pharmacol. 2020, 11, 733.10.3389/fphar.2020.00733. PubMed DOI PMC
Pathania S.; Narang R. K.; Rawal R. K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486–508. 10.1016/j.ejmech.2019.07.043. PubMed DOI
Mishra R.; Kumar N.; Mishra I.; Sachan N. A Review on Anticancer Activities of Thiophene and Its Analogs. Mini-Rev. Med. Chem. 2020, 20 (19), 1944–1965. 10.2174/1389557520666200715104555. PubMed DOI
Xiang J.; Zhang Z.; Mu Y.; Xu X.; Guo S.; Liu Y.; Russo D. P.; Zhu H.; Yan B.; Bai X. Discovery of Novel Tricyclic Thiazepine Derivatives as Anti-Drug-Resistant Cancer Agents by Combining Diversity-Oriented Synthesis and Converging Screening Approach. ACS Comb. Sci. 2016, 18 (5), 230–235. 10.1021/acscombsci.6b00010. PubMed DOI PMC
Mishra R.; Sharma P. K.; Verma P. K.; Tomer I.; Mathur G.; Dhakad P. K. Biological Potential of Thiazole Derivatives of Synthetic Origin. J. Heterocycl. Chem. 2017, 54 (4), 2103–2116. 10.1002/jhet.2827. DOI
Taghour M. S.; Elkady H.; Eldehna W. M.; El-Deeb N. M.; Kenawy A. M.; Elkaeed E. B.; Alsfouk A. A.; Alesawy M. S.; Metwaly A. M.; Eissa I. H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies. J. Enzym. Inhib. Med. Chem. 2022, 37 (1), 1903–1917. 10.1080/14756366.2022.2085693. PubMed DOI PMC
Hekal M. H.; Farag P. S.; Hemdan M. M.; El-Sayed A. A.; Hassaballah A. I.; El-Sayed W. M. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv. 2023, 13 (23), 15810–15825. 10.1039/d3ra02716c. PubMed DOI PMC
Mishra R.; Kumar N.; Sachan N. Synthesis, Biological Evaluation, and Docking Analysis of Novel Tetrahydrobenzothiophene Derivatives. Lett. Drug Des. Discov. 2022, 19 (6), 530–540. 10.2174/1570180819666220117123958. DOI
Boyd D. R.; Sharma N. D.; McMurray B.; Haughey S. A.; Allen C. C.; Hamilton J. T.; McRoberts W. C.; More O’Ferrall R. A.; Nikodinovic-Runic J.; Coulombel L. A.; et al. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. Org. Biomol. Chem. 2012, 10 (4), 782–790. 10.1039/c1ob06678a. PubMed DOI
Du G.; Du W.; An Y.; Wang M.; Hao F.; Tong X.; Gong Q.; He X.; Jiang H.; He W.; et al. Design, synthesis, and LFA-1/ICAM-1 antagonist activity evaluation of Lifitegrast analogues. Med. Chem. Res. 2022, 31 (4), 555–579. 10.1007/s00044-022-02851-9. PubMed DOI PMC
Villar R.; Encio I.; Migliaccio M.; Gil M. J.; Martinez-Merino V. Synthesis and cytotoxic activity of lipophilic sulphonamide derivatives of the benzo[b]thiophene 1,1-dioxide. Bioorg. Med. Chem. 2004, 12 (5), 963–968. 10.1016/j.bmc.2003.12.012. PubMed DOI
Serby M. D.; Zhao H.; Szczepankiewicz B. G.; Kosogof C.; Xin Z.; Liu B.; Liu M.; Nelson L. T.; Kaszubska W.; Falls H. D.; et al. 2,4-diaminopyrimidine derivatives as potent growth hormone secretagogue receptor antagonists. J. Med. Chem. 2006, 49 (8), 2568–2578. 10.1021/jm0510934. PubMed DOI
Madec D.; Mingoia F.; Macovei C.; Maitro G.; Giambastiani G.; Poli G. New Enantiopure Bis(thioether) and Bis(sulfoxide) Ligands from Benzothiophene. Eur. J. Org Chem. 2005, 2005 (3), 552–557. 10.1002/ejoc.200400547. DOI
Lawson C.; Ahmed Alta T. B.; Moschou G.; Skamnaki V.; Solovou T. G. A.; Topham C.; Hayes J.; Snape T. J. Novel diarylamides and diarylureas with N-substitution dependent activity against medulloblastoma. Eur. J. Med. Chem. 2021, 225, 113751.10.1016/j.ejmech.2021.113751. PubMed DOI
Banks W. A. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64 (7), 629–639. 10.1016/j.addr.2011.12.005. PubMed DOI PMC
Harley M. E.; Allan L. A.; Sanderson H. S.; Clarke P. R. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 2010, 29 (14), 2407–2420. 10.1038/emboj.2010.112. PubMed DOI PMC
Takenaka K.; Moriguchi T.; Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998, 280 (5363), 599–602. 10.1126/science.280.5363.599. PubMed DOI
Xu N.; Hegarat N.; Black E. J.; Scott M. T.; Hochegger H.; Gillespie D. A. Akt/PKB suppresses DNA damage processing and checkpoint activation in late G2. J. Cell Biol. 2010, 190 (3), 297–305. 10.1083/jcb.201003004. PubMed DOI PMC
Ng D. C.; Lin B. H.; Lim C. P.; Huang G.; Zhang T.; Poli V.; Cao X. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J. Cell Biol. 2006, 172 (2), 245–257. 10.1083/jcb.200503021. PubMed DOI PMC
Morris E. J.; Kawamura E.; Gillespie J. A.; Balgi A.; Kannan N.; Muller W. J.; Roberge M.; Dedhar S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat. Commun. 2017, 8, 15289.10.1038/ncomms15289. PubMed DOI PMC
Podolak M.; Holota S.; Deyak Y.; Dziduch K.; Dudchak R.; Wujec M.; Bielawski K.; Lesyk R.; Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg. Chem. 2024, 143, 107076.10.1016/j.bioorg.2023.107076. PubMed DOI
Walker S. R.; Chaudhury M.; Nelson E. A.; Frank D. A. Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling. Mol. Pharmacol. 2010, 78 (5), 903–908. 10.1124/mol.110.066316. PubMed DOI
Huang H. L.; Chao M. W.; Chen C. C.; Cheng C. C.; Chen M. C.; Lin C. F.; Liou J. P.; Teng C. M.; Pan S. L. LTP-1, a novel antimitotic agent and Stat3 inhibitor, inhibits human pancreatic carcinomas in vitro and in vivo. Sci. Rep. 2016, 6, 27794.10.1038/srep27794. PubMed DOI PMC
Sulimenko V.; Dráberová E.; Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front. Cell Dev. Biol. 2022, 10, 880761.10.3389/fcell.2022.880761. PubMed DOI PMC
Huang W.; Dong Z.; Wang F.; Peng H.; Liu J. Y.; Zhang J. T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol. 2014, 9 (5), 1188–1196. 10.1021/cb500071v. PubMed DOI PMC
Li Z.; Zhu T.; Xu Y.; Wu C.; Chen J.; Ren Y.; Kong L.; Sun S.; Guo W.; Wang Y.; et al. A novel STAT3 inhibitor, HJC0152, exerts potent antitumor activity in glioblastoma. Am. J. Cancer Res. 2019, 9 (4), 699–713. PubMed PMC
Chang Y. C.; Nalbant P.; Birkenfeld J.; Chang Z. F.; Bokoch G. M. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol. Biol. Cell 2008, 19 (5), 2147–2153. 10.1091/mbc.e07-12-1269. PubMed DOI PMC
Takesono A.; Heasman S. J.; Wojciak-Stothard B.; Garg R.; Ridley A. J. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 2010, 5 (1), e877410.1371/journal.pone.0008774. PubMed DOI PMC
Kuilman T.; Michaloglou C.; Vredeveld L. C.; Douma S.; van Doorn R.; Desmet C. J.; Aarden L. A.; Mooi W. J.; Peeper D. S. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133 (6), 1019–1031. 10.1016/j.cell.2008.03.039. PubMed DOI
Li R.; Dong J.; Bu X. Q.; Huang Y.; Yang J. Y.; Dong X.; Liu J. Retracted: Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells. J. Cell. Biochem. 2018, 119 (2), 2135–2143. 10.1002/jcb.26375. PubMed DOI
Yun U. J.; Park S. E.; Jo Y. S.; Kim J.; Shin D. Y. DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growth-promoting functions in human tumors. Cancer Lett. 2012, 323 (2), 155–160. 10.1016/j.canlet.2012.04.003. PubMed DOI
Kojima H.; Inoue T.; Kunimoto H.; Nakajima K. IL-6-STAT3 signaling and premature senescence. JAK-STAT 2013, 2 (4), e2576310.4161/jkst.25763. PubMed DOI PMC
Wang L.; Lan J.; Tang J.; Luo N. MCP-1 targeting: Shutting off an engine for tumor development (Review). Oncol. Lett. 2021, 23 (1), 26.10.3892/ol.2021.13144. PubMed DOI PMC
Nováková M.; Dráberová E.; Schürmann W.; Czihak G.; Viklický V.; Dr-aber P. γ-tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil Cytoskeleton 1996, 33 (1), 38–51. 10.1002/(sici)1097-0169(1996)33:1<38::aid-cm5>3.0.co;2-e. PubMed DOI
Dimri G. P.; Lee X.; Basile G.; Acosta M.; Scott G.; Roskelley C.; Medrano E. E.; Linskens M.; Rubelj I.; Pereira-Smith O.; et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 1995, 92 (20), 9363–9367. 10.1073/pnas.92.20.9363. PubMed DOI PMC
Müller T.; Sedlák D.; Bartunék P. Laboratory Information Systems to High-Throughput Screening. Chem. Listy 2017, 111 (11), 766–771.
Chrienova Z.; Rysanek D.; Novak J.; Vasicova P.; Oleksak P.; Andrys R.; Skarka A.; Dumanovic J.; Milovanovic Z.; Jacevic V.; et al. Frentizole derivatives with mTOR inhibiting and senomorphic properties. Biomed. Pharmacother. 2023, 167, 115600.10.1016/j.biopha.2023.115600. PubMed DOI
Ershov D.; Phan M.-S.; Pylvänäinen J. W.; Rigaud S. U.; Blanc L. L.; Charles-Orszag A.; Conway J. R. W.; Laine R. F.; Roy N. H.; Bonazzi D.; et al. Bringing TrackMate into the era of machine-learning and deep-learning. bioRxiv 2021, 2021.09.03.458852.10.1101/2021.09.03.458852. DOI
Ershov D.; Phan M. S.; Pylvanainen J. W.; Rigaud S. U.; Le Blanc L.; Charles-Orszag A.; Conway J. R. W.; Laine R. F.; Roy N. H.; Bonazzi D.; et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 2022, 19 (7), 829–832. 10.1038/s41592-022-01507-1. PubMed DOI
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Berg S.; Kutra D.; Kroeger T.; Straehle C. N.; Kausler B. X.; Haubold C.; Schiegg M.; Ales J.; Beier T.; Rudy M.; et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16 (12), 1226–1232. 10.1038/s41592-019-0582-9. PubMed DOI
Nussbaum-Krammer C. I.; Neto M. F.; Brielmann R. M.; Pedersen J. S.; Morimoto R. I. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J. Vis. Exp. 2015, (95), e52321.10.3791/52321-v. PubMed DOI PMC
Gaskin F.; Cantor C. R.; Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 1974, 89 (4), 737–755. 10.1016/0022-2836(74)90048-5. PubMed DOI