Discovery of a 6-Aminobenzo[b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities

. 2024 Sep 13 ; 7 (9) : 2755-2783. [epub] 20240812

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39296273

6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.

Zobrazit více v PubMed

Gai C.; Harnor S. J.; Zhang S.; Cano C.; Zhuang C.; Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med. Chem. 2022, 13 (12), 1460–1475. 10.1039/d2md00216g. PubMed DOI PMC

Jackson P. A.; Widen J. C.; Harki D. A.; Brummond K. M. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J. Med. Chem. 2017, 60 (3), 839–885. 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC

Huang F.; Han X.; Xiao X.; Zhou J. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules 2022, 27 (22), 7728.10.3390/molecules27227728. PubMed DOI PMC

Schust J.; Sperl B.; Hollis A.; Mayer T. U.; Berg T. S. Stattic: A Small-Molecule Inhibitor of STAT3 Activation and Dimerization. Chem. Biol. 2006, 13 (11), 1235–1242. 10.1016/j.chembiol.2006.09.018. PubMed DOI

Poria D. K.; Sheshadri N.; Balamurugan K.; Sharan S.; Sterneck E. The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression. J. Biol. Chem. 2021, 296, 100220.10.1074/jbc.RA120.016645. PubMed DOI PMC

Uchihara Y.; Ohe T.; Mashino T.; Kidokoro T.; Tago K.; Tamura H.; Funakoshi-Tago M. N-Acetyl cysteine prevents activities of STAT3 inhibitors, Stattic and BP-1–102 independently of its antioxidant properties. Pharmacol. Rep. 2019, 71 (6), 1067–1078. 10.1016/j.pharep.2019.05.021. PubMed DOI

Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144 (5), 646–674. 10.1016/j.cell.2011.02.013. PubMed DOI

Verhoeven Y.; Tilborghs S.; Jacobs J.; De Waele J.; Quatannens D.; Deben C.; Prenen H.; Pauwels P.; Trinh X. B.; Wouters A.; et al. The potential and controversy of targeting STAT family members in cancer. Semin. Cancer Biol. 2020, 60, 41–56. 10.1016/j.semcancer.2019.10.002. PubMed DOI

Bromberg J. F. Activation of STAT proteins and growth control. Bioessays 2001, 23 (2), 161–169. 10.1002/1521-1878(200102)23:2<161::AID-BIES1023>3.0.CO;2-0. PubMed DOI

Yu H.; Jove R. The STATs of cancer--new molecular targets come of age. Nat. Rev. Cancer 2004, 4 (2), 97–105. 10.1038/nrc1275. PubMed DOI

Bromberg J. F.; Wrzeszczynska M. H.; Devgan G.; Zhao Y.; Pestell R. G.; Albanese C.; Darnell J. E. Jr. Stat3 as an oncogene. Cell 1999, 98 (3), 295–303. 10.1016/s0092-8674(00)81959-5. PubMed DOI

Wang H.-Q.; Man Q.-W.; Huo F.-Y.; Gao X.; Lin H.; Li S.-R.; Wang J.; Su F.-C.; Cai L.; Shi Y.; et al. STAT3 pathway in cancers: Past, present, and future. MedComm 2022, 3 (2), e12410.1002/mco2.124. PubMed DOI PMC

Hu Y.; Dong Z.; Liu K. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. J. Exp. Clin. Cancer Res. 2024, 43 (1), 23.10.1186/s13046-024-02949-5. PubMed DOI PMC

Chen X.; Yang W.; Deng X.; Ye S.; Xiao W. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway. Mol. Vis. 2020, 26, 517–529. PubMed PMC

Steinman R. A.; Robinson A. R.; Feghali-Bostwick C. A. Antifibrotic effects of roscovitine in normal and scleroderma fibroblasts. PLoS One 2012, 7 (11), e4856010.1371/journal.pone.0048560. PubMed DOI PMC

Liebl M. C.; Hofmann T. G. Regulating the p53 Tumor Suppressor Network at PML Biomolecular Condensates. Cancers 2022, 14 (19), 4549.10.3390/cancers14194549. PubMed DOI PMC

Vultur A.; Cao J.; Arulanandam R.; Turkson J.; Jove R.; Greer P.; Craig A.; Elliott B.; Raptis L. Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 2004, 23 (15), 2600–2616. 10.1038/sj.onc.1207378. PubMed DOI

von Manstein V.; Groner B. Tumor cell resistance against targeted therapeutics: the density of cultured glioma tumor cells enhances Stat3 activity and offers protection against the tyrosine kinase inhibitor canertinib. MedChemComm 2017, 8 (1), 96–102. 10.1039/C6MD00463F. PubMed DOI PMC

Di L.; Kerns E. H.; Fan K.; McConnell O. J.; Carter G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38 (3), 223–232. 10.1016/s0223-5234(03)00012-6. PubMed DOI

Park M. C.; Jeong H.; Son S. H.; Kim Y.; Han D.; Goughnour P. C.; Kang T.; Kwon N. H.; Moon H. E.; Paek S. H.; et al. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function. Cancer Res. 2016, 76 (5), 1044–1054. 10.1158/0008-5472.CAN-14-2611. PubMed DOI

Clark J.; Edwards S.; Feber A.; Flohr P.; John M.; Giddings I.; Crossland S.; Stratton M. R.; Wooster R.; Campbell C.; et al. Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 2003, 22 (8), 1247–1252. 10.1038/sj.onc.1206247. PubMed DOI

Seim I.; Jeffery P. L.; Thomas P. B.; Nelson C. C.; Chopin L. K. Whole-Genome Sequence of the Metastatic PC3 and LNCaP Human Prostate Cancer Cell Lines. G3 2017, 7 (6), 1731–1741. 10.1534/g3.117.039909. PubMed DOI PMC

Buettner R.; Corzano R.; Rashid R.; Lin J.; Senthil M.; Hedvat M.; Schroeder A.; Mao A.; Herrmann A.; Yim J.; et al. Alkylation of cysteine 468 in Stat3 defines a novel site for therapeutic development. ACS Chem. Biol. 2011, 6 (5), 432–443. 10.1021/cb100253e. PubMed DOI PMC

Heidelberger S.; Zinzalla G.; Antonow D.; Essex S.; Piku Basu B.; Palmer J.; Husby J.; Jackson P. J.; Rahman K. M.; Wilderspin A. F.; et al. Investigation of the protein alkylation sites of the STAT3:STAT3 inhibitor Stattic by mass spectrometry. Bioorg. Med. Chem. Lett. 2013, 23 (16), 4719–4722. 10.1016/j.bmcl.2013.05.066. PubMed DOI

Elmaci I. ˙.; Altinoz M. A.; Sari R.; Bolukbasi F. H. Phosphorylated Histone H3 (PHH3) as a Novel Cell Proliferation Marker and Prognosticator for Meningeal Tumors: A Short Review. Appl. Immunohistochem. Mol. Morphol. 2018, 26 (9), 627–631. 10.1097/PAI.0000000000000499. PubMed DOI

Park C. H.; Kim K. T. Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ. PLoS One 2012, 7 (9), e4430710.1371/journal.pone.0044307. PubMed DOI PMC

Dráberová E.; Sulimenko V.; Sulimenko T.; Böhm K. J.; Dráber P. Recovery of tubulin functions after freeze-drying in the presence of trehalose. Anal. Biochem. 2010, 397 (1), 67–72. 10.1016/j.ab.2009.10.016. PubMed DOI

Teng Y.; Ross J. L.; Cowell J. K. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAK-STAT 2014, 3 (1), e2808610.4161/jkst.28086. PubMed DOI PMC

Chrienova Z.; Rysanek D.; Oleksak P.; Stary D.; Bajda M.; Reinis M.; Mikyskova R.; Novotny O.; Andrys R.; Skarka A.; et al. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front. Aging Neurosci. 2022, 14, 1048260.10.3389/fnagi.2022.1048260. PubMed DOI PMC

Coppe J. P.; Patil C. K.; Rodier F.; Sun Y.; Munoz D. P.; Goldstein J.; Nelson P. S.; Desprez P. Y.; Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6 (12), e30110.1371/journal.pbio.0060301. PubMed DOI PMC

Rayan A.; Raiyn J.; Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One 2017, 12 (11), e018792510.1371/journal.pone.0187925. PubMed DOI PMC

Cui W.; Aouidate A.; Wang S.; Yu Q.; Li Y.; Yuan S. Discovering Anti-Cancer Drugs via Computational Methods. Front. Pharmacol. 2020, 11, 733.10.3389/fphar.2020.00733. PubMed DOI PMC

Pathania S.; Narang R. K.; Rawal R. K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019, 180, 486–508. 10.1016/j.ejmech.2019.07.043. PubMed DOI

Mishra R.; Kumar N.; Mishra I.; Sachan N. A Review on Anticancer Activities of Thiophene and Its Analogs. Mini-Rev. Med. Chem. 2020, 20 (19), 1944–1965. 10.2174/1389557520666200715104555. PubMed DOI

Xiang J.; Zhang Z.; Mu Y.; Xu X.; Guo S.; Liu Y.; Russo D. P.; Zhu H.; Yan B.; Bai X. Discovery of Novel Tricyclic Thiazepine Derivatives as Anti-Drug-Resistant Cancer Agents by Combining Diversity-Oriented Synthesis and Converging Screening Approach. ACS Comb. Sci. 2016, 18 (5), 230–235. 10.1021/acscombsci.6b00010. PubMed DOI PMC

Mishra R.; Sharma P. K.; Verma P. K.; Tomer I.; Mathur G.; Dhakad P. K. Biological Potential of Thiazole Derivatives of Synthetic Origin. J. Heterocycl. Chem. 2017, 54 (4), 2103–2116. 10.1002/jhet.2827. DOI

Taghour M. S.; Elkady H.; Eldehna W. M.; El-Deeb N. M.; Kenawy A. M.; Elkaeed E. B.; Alsfouk A. A.; Alesawy M. S.; Metwaly A. M.; Eissa I. H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies. J. Enzym. Inhib. Med. Chem. 2022, 37 (1), 1903–1917. 10.1080/14756366.2022.2085693. PubMed DOI PMC

Hekal M. H.; Farag P. S.; Hemdan M. M.; El-Sayed A. A.; Hassaballah A. I.; El-Sayed W. M. New 1,3,4-thiadiazoles as potential anticancer agents: pro-apoptotic, cell cycle arrest, molecular modelling, and ADMET profile. RSC Adv. 2023, 13 (23), 15810–15825. 10.1039/d3ra02716c. PubMed DOI PMC

Mishra R.; Kumar N.; Sachan N. Synthesis, Biological Evaluation, and Docking Analysis of Novel Tetrahydrobenzothiophene Derivatives. Lett. Drug Des. Discov. 2022, 19 (6), 530–540. 10.2174/1570180819666220117123958. DOI

Boyd D. R.; Sharma N. D.; McMurray B.; Haughey S. A.; Allen C. C.; Hamilton J. T.; McRoberts W. C.; More O’Ferrall R. A.; Nikodinovic-Runic J.; Coulombel L. A.; et al. Bacterial dioxygenase- and monooxygenase-catalysed sulfoxidation of benzo[b]thiophenes. Org. Biomol. Chem. 2012, 10 (4), 782–790. 10.1039/c1ob06678a. PubMed DOI

Du G.; Du W.; An Y.; Wang M.; Hao F.; Tong X.; Gong Q.; He X.; Jiang H.; He W.; et al. Design, synthesis, and LFA-1/ICAM-1 antagonist activity evaluation of Lifitegrast analogues. Med. Chem. Res. 2022, 31 (4), 555–579. 10.1007/s00044-022-02851-9. PubMed DOI PMC

Villar R.; Encio I.; Migliaccio M.; Gil M. J.; Martinez-Merino V. Synthesis and cytotoxic activity of lipophilic sulphonamide derivatives of the benzo[b]thiophene 1,1-dioxide. Bioorg. Med. Chem. 2004, 12 (5), 963–968. 10.1016/j.bmc.2003.12.012. PubMed DOI

Serby M. D.; Zhao H.; Szczepankiewicz B. G.; Kosogof C.; Xin Z.; Liu B.; Liu M.; Nelson L. T.; Kaszubska W.; Falls H. D.; et al. 2,4-diaminopyrimidine derivatives as potent growth hormone secretagogue receptor antagonists. J. Med. Chem. 2006, 49 (8), 2568–2578. 10.1021/jm0510934. PubMed DOI

Madec D.; Mingoia F.; Macovei C.; Maitro G.; Giambastiani G.; Poli G. New Enantiopure Bis(thioether) and Bis(sulfoxide) Ligands from Benzothiophene. Eur. J. Org Chem. 2005, 2005 (3), 552–557. 10.1002/ejoc.200400547. DOI

Lawson C.; Ahmed Alta T. B.; Moschou G.; Skamnaki V.; Solovou T. G. A.; Topham C.; Hayes J.; Snape T. J. Novel diarylamides and diarylureas with N-substitution dependent activity against medulloblastoma. Eur. J. Med. Chem. 2021, 225, 113751.10.1016/j.ejmech.2021.113751. PubMed DOI

Banks W. A. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood-brain barrier. Adv. Drug Deliv. Rev. 2012, 64 (7), 629–639. 10.1016/j.addr.2011.12.005. PubMed DOI PMC

Harley M. E.; Allan L. A.; Sanderson H. S.; Clarke P. R. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 2010, 29 (14), 2407–2420. 10.1038/emboj.2010.112. PubMed DOI PMC

Takenaka K.; Moriguchi T.; Nishida E. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 1998, 280 (5363), 599–602. 10.1126/science.280.5363.599. PubMed DOI

Xu N.; Hegarat N.; Black E. J.; Scott M. T.; Hochegger H.; Gillespie D. A. Akt/PKB suppresses DNA damage processing and checkpoint activation in late G2. J. Cell Biol. 2010, 190 (3), 297–305. 10.1083/jcb.201003004. PubMed DOI PMC

Ng D. C.; Lin B. H.; Lim C. P.; Huang G.; Zhang T.; Poli V.; Cao X. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J. Cell Biol. 2006, 172 (2), 245–257. 10.1083/jcb.200503021. PubMed DOI PMC

Morris E. J.; Kawamura E.; Gillespie J. A.; Balgi A.; Kannan N.; Muller W. J.; Roberge M.; Dedhar S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat. Commun. 2017, 8, 15289.10.1038/ncomms15289. PubMed DOI PMC

Podolak M.; Holota S.; Deyak Y.; Dziduch K.; Dudchak R.; Wujec M.; Bielawski K.; Lesyk R.; Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg. Chem. 2024, 143, 107076.10.1016/j.bioorg.2023.107076. PubMed DOI

Walker S. R.; Chaudhury M.; Nelson E. A.; Frank D. A. Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) signaling. Mol. Pharmacol. 2010, 78 (5), 903–908. 10.1124/mol.110.066316. PubMed DOI

Huang H. L.; Chao M. W.; Chen C. C.; Cheng C. C.; Chen M. C.; Lin C. F.; Liou J. P.; Teng C. M.; Pan S. L. LTP-1, a novel antimitotic agent and Stat3 inhibitor, inhibits human pancreatic carcinomas in vitro and in vivo. Sci. Rep. 2016, 6, 27794.10.1038/srep27794. PubMed DOI PMC

Sulimenko V.; Dráberová E.; Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front. Cell Dev. Biol. 2022, 10, 880761.10.3389/fcell.2022.880761. PubMed DOI PMC

Huang W.; Dong Z.; Wang F.; Peng H.; Liu J. Y.; Zhang J. T. A small molecule compound targeting STAT3 DNA-binding domain inhibits cancer cell proliferation, migration, and invasion. ACS Chem. Biol. 2014, 9 (5), 1188–1196. 10.1021/cb500071v. PubMed DOI PMC

Li Z.; Zhu T.; Xu Y.; Wu C.; Chen J.; Ren Y.; Kong L.; Sun S.; Guo W.; Wang Y.; et al. A novel STAT3 inhibitor, HJC0152, exerts potent antitumor activity in glioblastoma. Am. J. Cancer Res. 2019, 9 (4), 699–713. PubMed PMC

Chang Y. C.; Nalbant P.; Birkenfeld J.; Chang Z. F.; Bokoch G. M. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol. Biol. Cell 2008, 19 (5), 2147–2153. 10.1091/mbc.e07-12-1269. PubMed DOI PMC

Takesono A.; Heasman S. J.; Wojciak-Stothard B.; Garg R.; Ridley A. J. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 2010, 5 (1), e877410.1371/journal.pone.0008774. PubMed DOI PMC

Kuilman T.; Michaloglou C.; Vredeveld L. C.; Douma S.; van Doorn R.; Desmet C. J.; Aarden L. A.; Mooi W. J.; Peeper D. S. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133 (6), 1019–1031. 10.1016/j.cell.2008.03.039. PubMed DOI

Li R.; Dong J.; Bu X. Q.; Huang Y.; Yang J. Y.; Dong X.; Liu J. Retracted: Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells. J. Cell. Biochem. 2018, 119 (2), 2135–2143. 10.1002/jcb.26375. PubMed DOI

Yun U. J.; Park S. E.; Jo Y. S.; Kim J.; Shin D. Y. DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growth-promoting functions in human tumors. Cancer Lett. 2012, 323 (2), 155–160. 10.1016/j.canlet.2012.04.003. PubMed DOI

Kojima H.; Inoue T.; Kunimoto H.; Nakajima K. IL-6-STAT3 signaling and premature senescence. JAK-STAT 2013, 2 (4), e2576310.4161/jkst.25763. PubMed DOI PMC

Wang L.; Lan J.; Tang J.; Luo N. MCP-1 targeting: Shutting off an engine for tumor development (Review). Oncol. Lett. 2021, 23 (1), 26.10.3892/ol.2021.13144. PubMed DOI PMC

Nováková M.; Dráberová E.; Schürmann W.; Czihak G.; Viklický V.; Dr-aber P. γ-tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil Cytoskeleton 1996, 33 (1), 38–51. 10.1002/(sici)1097-0169(1996)33:1<38::aid-cm5>3.0.co;2-e. PubMed DOI

Dimri G. P.; Lee X.; Basile G.; Acosta M.; Scott G.; Roskelley C.; Medrano E. E.; Linskens M.; Rubelj I.; Pereira-Smith O.; et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 1995, 92 (20), 9363–9367. 10.1073/pnas.92.20.9363. PubMed DOI PMC

Müller T.; Sedlák D.; Bartunék P. Laboratory Information Systems to High-Throughput Screening. Chem. Listy 2017, 111 (11), 766–771.

Chrienova Z.; Rysanek D.; Novak J.; Vasicova P.; Oleksak P.; Andrys R.; Skarka A.; Dumanovic J.; Milovanovic Z.; Jacevic V.; et al. Frentizole derivatives with mTOR inhibiting and senomorphic properties. Biomed. Pharmacother. 2023, 167, 115600.10.1016/j.biopha.2023.115600. PubMed DOI

Ershov D.; Phan M.-S.; Pylvänäinen J. W.; Rigaud S. U.; Blanc L. L.; Charles-Orszag A.; Conway J. R. W.; Laine R. F.; Roy N. H.; Bonazzi D.; et al. Bringing TrackMate into the era of machine-learning and deep-learning. bioRxiv 2021, 2021.09.03.458852.10.1101/2021.09.03.458852. DOI

Ershov D.; Phan M. S.; Pylvanainen J. W.; Rigaud S. U.; Le Blanc L.; Charles-Orszag A.; Conway J. R. W.; Laine R. F.; Roy N. H.; Bonazzi D.; et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 2022, 19 (7), 829–832. 10.1038/s41592-022-01507-1. PubMed DOI

Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Berg S.; Kutra D.; Kroeger T.; Straehle C. N.; Kausler B. X.; Haubold C.; Schiegg M.; Ales J.; Beier T.; Rudy M.; et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 2019, 16 (12), 1226–1232. 10.1038/s41592-019-0582-9. PubMed DOI

Nussbaum-Krammer C. I.; Neto M. F.; Brielmann R. M.; Pedersen J. S.; Morimoto R. I. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J. Vis. Exp. 2015, (95), e52321.10.3791/52321-v. PubMed DOI PMC

Gaskin F.; Cantor C. R.; Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J. Mol. Biol. 1974, 89 (4), 737–755. 10.1016/0022-2836(74)90048-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...