Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36561137
PubMed Central
PMC9767416
DOI
10.3389/fnagi.2022.1048260
Knihovny.cz E-resources
- Keywords
- SASP phenotype, aging, anti-aging therapy, cancer, mTOR,
- Publication type
- Journal Article MeSH
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
Department of Neurology University Hospital Hradec Kralove Hradec Králové Czechia
Doctoral School of Medical and Health Sciences Jagiellonian University Medical College Kraków Poland
Faculty of Medicine in Hradec Králové Charles University Prague Hradec Králové Czechia
See more in PubMed
Anoopkumar-Dukie S., Carey J. B., Conere T., O’sullivan E., van Pelt F. N., Allshire A. (2005). Resazurin assay of radiation response in cultured cells. Br. J. Radiol. 78 945–947. 10.1259/bjr/54004230 PubMed DOI
Baker D. J., Wijshake T., Tchkonia T., LeBrasseur N. K., Childs B. G., van de Sluis B., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479 232–236. 10.1038/nature10600 PubMed DOI PMC
Birch J., Gil J. (2020). Senescence and the SASP: Many therapeutic avenues. Genes Dev. 34 1565–1576. 10.1101/gad.343129.120 PubMed DOI PMC
Blagosklonny M. V. (2006). Aging and immortality: Quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5 2087–2102. 10.4161/cc.5.18.3288 PubMed DOI
Blagosklonny M. V. (2012). Answering the ultimate question “what is the proximal cause of aging?”. Aging 4 861–877. 10.18632/aging.100525 PubMed DOI PMC
Blagosklonny M. V. (2014). Geroconversion: Irreversible step to cellular senescence. Cell Cycle 13 3628–3635. 10.4161/15384101.2014.985507 PubMed DOI PMC
Blagosklonny M. V. (2018b). Does rapamycin slow down time? Oncotarget 9 30210–30212. 10.18632/oncotarget.25788 PubMed DOI PMC
Blagosklonny M. V. (2018a). Disease or not, aging is easily treatable. Aging 10 3067–3078. 10.18632/aging.101647 PubMed DOI PMC
Blagosklonny M. V. (2019). Rapamycin for longevity: Opinion article. Aging 11 8048–8067. 10.18632/aging.102355 PubMed DOI PMC
Blagosklonny M. V. (2021). The hyperfunction theory of aging: Three common misconceptions. Oncoscience 8 103–107. 10.18632/oncoscience.545 PubMed DOI PMC
Bockaert J., Marin P. (2015). mTOR in Brain Physiology and Pathologies. Physiol. Rev. 95 1157–1187. 10.1152/physrev.00038.2014 PubMed DOI
Brooks B. R., Brooks C. L., Mackerell A. D., Nilsson L., Petrella R. J., Roux B., et al. (2009). CHARMM: The biomolecular simulation program. J. Comput. Chem. 30 1545–1614. 10.1002/jcc.21287 PubMed DOI PMC
Chrienova Z., Nepovimova E., Kuca K. (2021). The role of mTOR in age-related diseases. J. Enzyme Inhib. Med. Chem. 36 1679–1693. 10.1080/14756366.2021.1955873 PubMed DOI PMC
Coppé J. P., Patil C. K., Rodier F., Sun Y., Muñoz D. P., Goldstein J., et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 10.1371/journal.pbio.0060301 PubMed DOI PMC
Cornu M., Albert V., Hall M. N. (2013). mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23 53–62. 10.1016/j.gde.2012.12.005 PubMed DOI
Costa-Mattioli M., Monteggia L. M. (2013). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat. Neurosci. 16 1537–1543. 10.1038/nn.3546 PubMed DOI
Demaria M., Ohtani N., Youssef S. A., Rodier F., Toussaint W., Mitchell J. R., et al. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell. 31 722–733. 10.1016/j.devcel.2014.11.012 PubMed DOI PMC
Dimri G. P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92 9363–9367. 10.1073/pnas.92.20.9363 PubMed DOI PMC
Feoktistova M., Geserick P., Leverkus M. (2016). Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016:db.rot087379. 10.1101/pdb.prot087379 PubMed DOI
Franceschi C., Campisi J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 S4–S9. 10.1093/gerona/glu057 PubMed DOI
Hoeffer C. A., Klann E. (2010). mTOR signaling: At the crossroads of plasticity, memory and disease. Trends Neurosci. 33 67–75. 10.1016/j.tins.2009.11.003 PubMed DOI PMC
Howell J. J., Manning B. D. (2011). mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab. 22 94–102. 10.1016/j.tem.2010.12.003 PubMed DOI PMC
Jo S., Kim T., Iyer V. G., Im W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29 1859–1865. 10.1002/jcc.20945 PubMed DOI
Karachi A., Dastmalchi F., Mitchell D. A., Rahman M. (2018). Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro Oncol. 20 1566–1572. 10.1093/neuonc/noy072 PubMed DOI PMC
Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110 163–175. 10.1016/s0092-8674(02)00808-5 PubMed DOI
Kubota D., Ishikawa M., Ishikawa M., Yahata N., Murakami S., Fujishima K., et al. (2006). Tricyclic pharmacophore-based molecules as novel integrin alphavbeta3 antagonists. Part IV: Preliminary control of alphavbeta3 selectivity by meta-oriented substitution. Bioorg. Med. Chem. 14 4158–4181. 10.1016/j.bmc.2006.01.062 PubMed DOI
Laberge R. M., Sun Y., Orjalo A. V., Patil C. K., Freund A., Zhou L., et al. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell. Biol. 17 1049–1061. 10.1038/ncb3195 PubMed DOI PMC
Lamming D. W. (2014). mTORC2 takes the longevity stAGE. Oncotarget 5 7214–7215. 10.18632/oncotarget.2457 PubMed DOI PMC
Lamming D. W., Ye L., Sabatini D. M., Baur J. A. (2013). Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 123 980–989. 10.1172/JCI64099 PubMed DOI PMC
Laplante M., Sabatini D. M. (2012). mTOR signaling in growth control and disease. Cell 149 274–293. 10.1016/j.cell.2012.03.017 PubMed DOI PMC
Leontieva O. V., Blagosklonny M. V. (2014). M(o)TOR of pseudo-hypoxic state in aging: Rapamycin to the rescue. Cell Cycle 13 509–515. 10.4161/cc.27973 PubMed DOI
Leontieva O. V., Blagosklonny M. V. (2016). Gerosuppression by pan-mTOR inhibitors. Aging 8 3535–3551. 10.18632/aging.101155 PubMed DOI PMC
Oleksak P., Nepovimova E., Chrienova Z., Musilek K., Patocka J., Kuca K. (2022). Contemporary mTOR inhibitor scaffolds to diseases breakdown: A patent review (2015-2021). Eur. J. Med. Chem. 238:114498. 10.1016/j.ejmech.2022.114498 PubMed DOI
Rankovic Z. (2015). CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 58 2584–2608. 10.1021/jm501535r PubMed DOI
Salovska B., Kondelova A., Pimkova K., Liblova Z., Pribyl M., Fabrik I., et al. (2022). Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol. 49:102212. 10.1016/j.redox.2021.102212 PubMed DOI PMC
Sapega O., Mikyšková R., Bieblová J., Mrázková B., Hodnı Z., Reiniš M. (2018). Distinct phenotypes and “bystander” effects of senescent tumour cells induced by docetaxel or immunomodulatory cytokines. Int. J. Oncol. 53 1997–2009. 10.3892/ijo.2018.4553 PubMed DOI PMC
Stary D., Nepovimova E., Kuca K., Bajda M. (2022). Searching for new mTOR kinase inhibitors: Analysis of binding sites and validation of docking protocols. Chem. Biol. Drug Des. (in press). 10.1111/cbdd.14126 PubMed DOI
Terzi M. Y., Izmirli M., Gogebakan B. (2016). The cell fate: Senescence or quiescence. Mol. Biol. Rep. 43 1213–1220. 10.1007/s11033-016-4065-0 PubMed DOI
Tong X. P., Chen Y., Zhang S. Y., Xie T., Tian M., Guo M. R., et al. (2015). Key autophagic targets and relevant small-molecule compounds in cancer therapy. Cell Prolif. 48 7–16. 10.1111/cpr.12154 PubMed DOI PMC
Wager T. T., Hou X., Verhoest P. R., Villalobos A. (2016). Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem. Neurosci. 7 767–775. 10.1021/acschemneuro.6b00029 PubMed DOI
Wang R., Yu Z., Sunchu B., Shoaf J., Dang I., Zhao S., et al. (2017). Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell 16 564–574. 10.1111/acel.12587 PubMed DOI PMC
Yip C. K., Murata K., Walz T., Sabatini D. M., Kang S. A. (2010). Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell. 38 768–774. 10.1016/j.molcel.2010.05.017 PubMed DOI PMC
Zaytseva Y. Y., Valentino J. D., Gulhati P., Evers B. M. (2012). mTOR inhibitors in cancer therapy. Cancer Lett. 319 1–7. 10.1016/j.canlet.2012.01.005 PubMed DOI