The role of mTOR in age-related diseases
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
34309456
PubMed Central
PMC8317948
DOI
10.1080/14756366.2021.1955873
Knihovny.cz E-zdroje
- Klíčová slova
- Ageing, age-related disease, mTORC1, mTORC2, rapamycin,
- MeSH
- lidé MeSH
- nádory metabolismus MeSH
- neurodegenerativní nemoci metabolismus MeSH
- signální transdukce MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- TOR serin-threoninkinasy MeSH
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Zobrazit více v PubMed
Vézina C, Kudelski A, Sehgal SN.. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 1975;28:721–6. PubMed
Sehgal SN, Baker H, Vézina C.. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 1975;28:727–32. PubMed
Singh K, Sun S, Vézina C.. Rapamycin (AY-22,989), a new antifungal antibiotic. IV. Mechanism of action. J Antibiot 1979;32:630–45. PubMed
Garber K. Rapamycin's resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst 2001;93:1517–9. PubMed
Martel RR, Klicius J, Galet S.. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol 1977;55:48–51. PubMed
Dumont FJ, Staruch MJ, Koprak SL, et al. . The immunosuppressive and toxic effects of FK-506 are mechanistically related: pharmacology of a novel antagonist of FK-506 and rapamycin. J Exp Med 1992;176:751–60. PubMed PMC
Dumont FJ, Staruch MJ, Koprak SL, et al. . Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 1990;144:251–8. PubMed
Bowman LJ, Brennan DC.. The role of tacrolimus in renal transplantation. Expert Opin Pharmacother 2008;9:635–43. PubMed
Morath C, Arns W, Schwenger V, et al. . Sirolimus in renal transplantation. Nephrol Dial Transplant 2007;22:viii61–5. PubMed
Eng CP, Sehgal SN, Vézina C.. Activity of Rapamycin (AY-22,989) against transplanted tumors. J Antibiot 1984;37:1231–7. PubMed
Brown EJ, Albers MW, Shin TB, et al. . A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994;369:756–8. PubMed
Vellai T, Takacs-Vellai K, Zhang Y, et al. . Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003;426:620. PubMed
Kapahi P, Zid BM, Harper T, et al. . Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 2004;14:885–90. PubMed PMC
Kaeberlein M, Powers RW, Steffen KK, et al. . Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005;310:1193–6. PubMed
Harrison DE, Strong R, Sharp ZD, et al. . Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009;460:392–5. PubMed PMC
Miller RA, Harrison DE, Astle CM, et al. . Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 2011;66:191–201. PubMed PMC
Anisimov VN, Zabezhinski MA, Popovich IG, et al. . Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 2010;176:2092–7. PubMed PMC
Anisimov VN, Zabezhinski MA, Popovich IG, et al. . Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 2011;10:4230–6. PubMed
Wilkinson JE, Burmeister L, Brooks SV, et al. . Rapamycin slows aging in mice. Aging Cell 2012;11:675–82. PubMed PMC
Chen C, Liu Y, Liu Y, Zheng P.. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2009;2:ra75. PubMed PMC
Hartwell LH. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol 1967;93:1662–70. PubMed PMC
Schmelzle T, Hall MN.. TOR, a central controller of cell growth. Cell 2000;103:253–62. PubMed
Heitman J, Movva N, Hall M.. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991;253:905–9. PubMed
Lench NJ, Macadam R, Markham AF.. The human gene encoding FKBP-rapamycin associated protein (FRAP) maps to chromosomal band 1p36.2. Hum Genet 1997;99:547–9. PubMed
Sabers CJ, Martin MM, Brunn GJ, et al. . Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995;270:815–22. PubMed
Sabatini DM, Erdjument-Bromage H, Lui M, et al. . RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994;78:35–43. PubMed
Chiu MI, Katz H, Berlin V.. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 1994;91:12574–8. PubMed PMC
Keith CT, Schreiber SL.. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 1995;270:50. PubMed
Baretić D, Williams RL.. The structural basis for mTOR function. Semin Cell Dev Biol 2014; 36:91–101. PubMed
Choi J, Chen J, Schreiber SL, Clardy J.. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996;273:239–42. PubMed
Loewith R, Jacinto E, Wullschleger S, et al. . Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002;10:457–68. PubMed
Smithson LJ, Gutmann DH.. Proteomic analysis reveals GIT1 as a novel mTOR complex component critical for mediating astrocyte survival. Genes Dev 2016;30:1383–8. PubMed PMC
Kim DH, Sarbassov DD, Ali SM, et al. . GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003;11:895–904. PubMed
Hara K, Maruki Y, Long X, et al. . Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002;110:177–89. PubMed
Kaizuka T, Hara T, Oshiro N, et al. . Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 2010;285:20109–16. PubMed PMC
Sancak Y, Thoreen CC, Peterson TR, et al. . PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903–15. PubMed
Peterson TR, Laplante M, Thoreen CC, et al. . DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873–86. PubMed PMC
Nojima H, Tokunaga C, Eguchi S, et al. . The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003;278:15461–4. PubMed
Schalm SS, Fingar DC, Sabatini DM, Blenis J.. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003;13:654–8. PubMed
Gingras AC, Raught B, Gygi SP, et al. . Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 2001;15:2852–64. PubMed PMC
Levy S, Avni D, Hariharan N, et al. . Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 1991;88:3319–23. PubMed PMC
Lahr RM, Fonseca BD, Ciotti GE, et al. . La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. Elife 2017;6:e24146. PubMed PMC
Hong S, Freeberg MA, Han T, et al. . LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs. Elife 2017;6:e25237. PubMed PMC
Mayer C, Zhao J, Yuan X, Grummt I.. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 2004;18:423–34. PubMed PMC
Hannan KM, Brandenburger Y, Jenkins A, et al. . mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003;23:8862–77. PubMed PMC
Shor B, Wu J, Shakey Q, et al. . Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J Biol Chem 2010;285:15380–92. PubMed PMC
Tsang CK, Liu H, Zheng XFS.. mTOR binds to the promoters of RNA polymerase I- And III-transcribed genes. Cell Cycle 2010;9:953–7. PubMed PMC
Jung CH, Jun CB, Ro S-H, et al. . ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009;20:1992–2003. PubMed PMC
Ganley IG, Lam DH, Wang J, et al. . ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284:12297–305. PubMed PMC
Koren I, Reem E, Kimchi A.. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol 2010;20:1093–8. PubMed
Wan W, Liu W.. MTORC1 regulates autophagic membrane growth by targeting WIPI2. Autophagy 2019;15:742–43. PubMed PMC
Zhao J, Zhai B, Gygi SP, Goldberg AL.. MTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci USA 2015;112:15790–7. PubMed PMC
Eid W, Dauner K, Courtney KC, et al. . mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA 2017;114:7999–8004. PubMed PMC
Porstmann T, Santos CR, Griffiths B, et al. . SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008;8:224–36. PubMed PMC
Kim JE, Chen J.. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004;53:2748–56. PubMed
Düvel K, Yecies JL, Menon S, et al. . Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171–83. PubMed PMC
Peterson TR, Sengupta SS, Harris TE, et al. . MTOR complex 1 regulates lipin 1 localization to control the srebp pathway. Cell 2011;146:408–20. PubMed PMC
Cunningham JT, Rodgers JT, Arlow DH, et al. . mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007;450:736–40. PubMed
Schieke SM, Phillips D, McCoy JP, et al. . The mammalian target of Rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006;281:27643–52. PubMed
Ben-Sahra I, Howell JJ, Asara JM, Manning BD.. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013;339:1323–8. PubMed PMC
Ben-Sahra I, Hoxhaj G, Ricoult SJH, et al. . mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 2016;351:728–33. PubMed PMC
Toschi A, Lee E, Gadi N, et al. . Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem 2008;283:34495–9. PubMed PMC
Hudson CC, Liu M, Chiang GG, et al. . Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002;22:7004–14. PubMed PMC
West MJ, Stoneley M, Willis AE.. Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene 1998;17:769–80. PubMed
He L, Gomes AP, Wang X, et al. . mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell 2018;70:949–60.e4. PubMed PMC
Dang CV. A time for MYC: metabolism and therapy. Cold Spring Harb Symp Quant Biol 2016;81:79–83. PubMed
Inoki K, Li Y, Zhu T, et al. . TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648–57. PubMed
Tee AR, Manning BD, Roux PP, et al. . Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003;13:1259–68. PubMed
Long X, Lin Y, Ortiz-Vega S, et al. . Rheb binds and regulates the mTOR kinase. Curr Biol 2005;15:702–13. PubMed
Ma L, Chen Z, Erdjument-Bromage H, et al. . Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121:179–93. PubMed
Sancak Y, Peterson TR, Shaul YD, et al. . The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320:1496–501. PubMed PMC
Rebsamen M, Pochini L, Stasyk T, et al. . SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015;519:477–81. PubMed PMC
Jung J, Genau HM, Behrends C.. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 2015;35:2479–94. PubMed PMC
Wolfson RL, Chantranupong L, Wyant GA, et al. . KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 2017;543:438–42. PubMed PMC
Saxton RA, Knockenhauer KE, Wolfson RL, et al. . Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 2016;351:53–8. PubMed PMC
Wolfson RL, Chantranupong L, Saxton RA, et al. . Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016;351:43–8. PubMed PMC
Saxton RA, Chantranupong L, Knockenhauer KE, et al. . Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 2016;536:229–33. PubMed PMC
Chantranupong L, Scaria SM, Saxton RA, et al. . The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016;165:153–64. PubMed PMC
Inoki K, Zhu T, Guan KL.. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577–90. PubMed
Gwinn DM, Shackelford DB, Egan DF, et al. . AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214–26. PubMed PMC
Feng Z, Zhang H, Levine AJ, Jin S.. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005;102:8204–9. PubMed PMC
Stambolic V, MacPherson D, Sas D, et al. . Regulation of PTEN Transcription by p53. Mol Cell 2001;8:317–25. PubMed
Budanov AV, Karin M.. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008;134:451–60. PubMed PMC
Brugarolas J, Lei K, Hurley RL, et al. . Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004;18:2893–904. PubMed PMC
Harrington LS, Findlay GM, Lamb RF.. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 2005;30:35–42. PubMed
Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004;167:399–403. PubMed PMC
Sarbassov DD, Ali SM, Kim D-H, et al. . Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296–302. PubMed
Stuttfeld E, Aylett CH, Imseng S, et al. . Architecture of the human mTORC2 core complex. Elife 2018;7:e33101. PubMed PMC
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM.. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005;307:1098–1101. PubMed
Jacinto E, Facchinetti V, Liu D, et al. . SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006;127:125–37. PubMed
Guertin DA, Stevens DM, Thoreen CC, et al. . Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006;11:859–71. PubMed
Pearce LR, Sommer EM, Sakamoto K, et al. . Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 2011;436:169–79. PubMed
Ikenoue T, Inoki K, Yang Q, et al. . Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. Embo J 2008;27:1919–31. PubMed PMC
García-Martínez JM, Alessi DR.. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008;416:375–85. PubMed
Jacinto E, Loewith R, Schmidt A, et al. . Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004;6:1122–8. PubMed
Ebner M, Sinkovics B, Szczygieł M, et al. . Localization of mTORC2 activity inside cells. J Cell Biol 2017;216:343–53. PubMed PMC
Zhao Y, Xiong X, Sun Y.. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011;44:304–16. PubMed PMC
Wang B, Jie Z, Joo D, et al. . TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 2017;545:365–9. PubMed PMC
Dibble CC, Asara JM, Manning BD.. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 2009;29:5657–70. PubMed PMC
Glidden EJ, Gray LG, Vemuru S, et al. . Multiple site acetylation of rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem 2012;287:581–8. PubMed PMC
Zinzalla V, Stracka D, Oppliger W, Hall MN.. Activation of mTORC2 by Association with the Ribosome. Cell 2011;144:757–68. PubMed
Hatano T, Morigasaki S, Tatebe H, et al. . Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose. Cell Cycle 2015;14:848–56. PubMed PMC
Cai W, Andres DA, Reiner DJ.. MTORC2 Is required for Rit-mediated oxidative stress resistance. PLOS One 2014;9:e115602. PubMed PMC
Saci A, Cantley LC, Carpenter CL.. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol Cell 2011;42:50–61. PubMed PMC
Byun J-K, Choi Y-K, Kim J-H, et al. . A positive feedback loop between Sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep 2017;20:586–99. PubMed
Gottlob K, Majewski N, Kennedy S, et al. . Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001;15:1406–18. PubMed PMC
Deprez J, Vertommen D, Alessi DR, et al. . Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997;272:17269–75. PubMed
Barthel A, Okino ST, Liao J, et al. . Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem 1999;274:20281–6. PubMed
Cerniglia GJ, Dey S, Gallagher-Colombo SM, et al. . The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation. Mol Cancer Ther 2015;14:1928–38. PubMed PMC
Masui K, Tanaka K, Akhavan D, et al. . mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 2013;18:726–39. PubMed PMC
Sun Q, Chen X, Ma J, et al. . Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 2011;108:4129–34. PubMed PMC
Zha X, Wang F, Wang Y, et al. . Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res 2011;71:13–8. PubMed
Masui K, Cavenee WK, Mischel PS.. Mischel PS. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 2014;25:364–73. PubMed PMC
Guri Y, Colombi M, Dazert E, et al. . mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell 2017;32:807–23.e12. PubMed
Tang Y, Wallace M, Sanchez-Gurmaches J, et al. . Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat Commun 2016;7:11365. PubMed PMC
Kumar A, Harris TE, Keller SR, et al. . Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol 2008;28:61–70. PubMed PMC
Hagiwara A, Cornu M, Cybulski N, et al. . Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 2012;15:725–38. PubMed
Betz C, Stracka D, Prescianotto-Baschong C, et al. . Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 2013;110:12526–34. PubMed PMC
Yuan M, Pino E, Wu L, et al. . Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J Biol Chem 2012;287:29579–88. PubMed PMC
Puigserver P, Rhee J, Donovan J, et al. . Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 2003;423:550–5. PubMed
Rosario FJ, Kanai Y, Powell TL, Jansson T.. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol 2013;591:609–25. PubMed PMC
Gu Y, Albuquerque CP, Braas D, et al. . mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT. Mol Cell 2017;67:128–38.e7. PubMed PMC
Saha A, Connelly S, Jiang J, et al. . Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis. Mol Cell 2014;55:264–76. PubMed PMC
Wang W, Fridman A, Blackledge W, et al. . The phosphatidylinositol 3-kinase/Akt cassette regulates purine nucleotide synthesis. J Biol Chem 2009;284:3521–8. PubMed PMC
Lamming DW, Mihaylova MM, Katajisto P, et al. . Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 2014;13:911–7. PubMed PMC
Nojima A, Yamashita M, Yoshida Y, et al. . Haploinsufficiency of Akt1 prolongs the lifespan of mice. PLOS One 2013;8:e69178. PubMed PMC
Shigihara N, Fukunaka A, Hara A, et al. . Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest 2014;124:3634–44. PubMed PMC
Ebato C, Uchida T, Arakawa M, et al. . Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008;8:325–32. PubMed
Jung HS, Chung KW, Won Kim J, et al. . Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008;8:318–24. PubMed
Bartolome A, Guillen C, Benito M.. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy 2012;8:1757–68. PubMed PMC
Shigeyama Y, Kobayashi T, Kido Y, et al. . Biphasic Response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol 2008;28:2971–9. PubMed PMC
Hernández MG, Aguilar AG, Burillo J, et al. . Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis 2018;9:481. PubMed PMC
Bartolomé A, Kimura-Koyanagi M, Asahara SI, et al. . Pancreatic β-cell failure mediated by mTORC1 hyperactivity and autophagic impairment. Diabetes 2014;63:2996–3008. PubMed
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991;6:487–98. PubMed
Hardy J, Higgins G.. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256:184–85. PubMed
Hardy J, Selkoe DJ.. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297:353–6. PubMed
Grundke-Iqbal I, Iqbal K, Tung YC, et al. . Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986;83:4913–7. PubMed PMC
Ihara Y, Nukina N, Miura R, Ogawara M.. Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer's disease. J Biochem 1986;99:1807–10. PubMed
Patrick GN, Zukerberg L, Nikolic M, et al. . Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999;402:615–22. PubMed
Cunnane S, Nugent S, Roy M, et al. . Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011;27:3–20. PubMed PMC
Reijmer YD, van den Berg E, Ruis C, et al. . Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev 2010;26:507–19. PubMed
Small GW, Mazziotta JC, Collins MT, et al. . Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. J Am Med Assoc 1995;273:942. PubMed
Duelli R, Kuschinsky W.. Brain glucose transporters: relationship to local energy demand. News Physiol Sci 2001;16:71–6. PubMed
Liu Y, Liu F, Grundke-Iqbal I, et al. . Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J Pathol 2011;225:54–62. PubMed PMC
Norambuena A, Wallrabe H, Cao R, et al. . A novel lysosome‐to‐mitochondria signaling pathway disrupted by amyloid‐β oligomers. Embo J 2018;37:e100241. PubMed PMC
Josselyn SA, Frankland PW.. mTORC2: actin on your memory. Nat Neurosci 2013;16:379–380. PubMed
Takei N, Nawa H.. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci 2014;7:28. PubMed PMC
Griffin RJ, Moloney A, Kelliher M, et al. . Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 2005;93:105–17. PubMed
Caccamo A, Maldonado MA, Majumder S, et al. . Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 2011;286:8924–32. PubMed PMC
Gupta A, Dey CS.. PTEN, a widely known negative regulator of insulin/PI3K signaling, positively regulates neuronal insulin resistance. Mol Biol Cell 2012;23:3882–98. PubMed PMC
O'Neill C, Kiely AP, Coakley MF, et al. . Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer's disease. Biochem Soc Trans 2012;40:721–7. PubMed
O’ Neill C. PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 2013;48:647–53. PubMed
An W-L, Cowburn RF, Li L, et al. . Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. Am J Pathol 2003;163:591–607. PubMed PMC
Hamano T, Gendron TF, Causevic E, et al. . Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008;27:1119–30. PubMed
Spilman P, Podlutskaya N, Hart MJ, et al. . Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLOS One 2010;5:e9979. PubMed PMC
Cassano T, Magini A, Giovagnoli S, et al. . Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease. Exp Neurol 2019;311:88–105. PubMed
Tramutola A, Lanzillotta C, Barone E, et al. . Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl Neurodegener 2018;7:1–22. PubMed PMC
Dauer W, Przedborski S.. Parkinson's disease: mechanisms and models. Neuron 2003;39:889–909. PubMed
Liu J, Liu W, Lu Y, et al. . Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy 2018;14:845–61. PubMed PMC
Crews L, Spencer B, Desplats P, et al. . Selective molecular alterations in the autophagy pathway in patients with lewy body disease and in models of alpha-synucleinopathy. PLOS One 2010;5:e9313. PubMed PMC
Gao S, Duan C, Gao G, et al. . Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int J Biochem Cell Biol 2015;64:25–33. PubMed
Jiang TF, Zhang YJ, Zhou HY, et al. . Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson's disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 2013;8:356–69. PubMed
Selvaraj S, Sun Y, Watt JA, et al. . Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 2012;122:1354–67. PubMed PMC
Xu Y, Liu C, Chen S, et al. . Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson's disease. Cell Signal 2014;26:1680–9. PubMed PMC
Meng T, Lin S, Zhuang H, et al. . Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019;3:141–61. PubMed PMC
Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR.. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 2015;38:26–35. PubMed
Ravikumar B, Duden R, Rubinsztein DC.. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002;11:1107–17. PubMed
Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC.. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009;16:46–56. PubMed
Ravikumar B, Vacher C, Berger Z, et al. . Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004;36:585–95. PubMed
Sheng Y, Chattopadhyay M, Whitelegge J, Selverstone Valentine J.. SOD1 Aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 2012;12:2560–72. PubMed
Li A, Zhang X, Le W.. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy 2008;4:290–3. PubMed
Morimoto N, Nagai M, Ohta Y, et al. . Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 2007;1167:112–7. PubMed
Rudnick ND, Griffey CJ, Guarnieri P, et al. . Distinct roles for motor neuron autophagy early and late in the SOD1G93A mouse model of ALS. Proc Natl Acad Sci USA 2017;114:E8294–303. PubMed PMC
An T, Shi P, Duan W, et al. . Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol 2014;49:1435–48. PubMed
Zhang X, Li L, Chen S, et al. . Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 2011;7:412–25. PubMed
Staats KA, Hernandez S, Schönefeldt S, et al. . Rapamycin increases survival in ALS mice lacking mature lymphocytes. Mol Neurodegener 2013;8:31. PubMed PMC
Warburg O. On the Origin of Cancer Cells. Science 1956;123:309–14. PubMed
Hanahan D, Weinberg RA.. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. PubMed
Ramapriyan R, Caetano MS, Barsoumian HB, et al. . Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2019;195:162–71. PubMed
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB.. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008;7:11–20. PubMed
Buller CL, Loberg RD, Fan M-H, et al. . A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol 2008;295:C836–43. PubMed PMC
Tran Q, Lee H, Park J, et al. . Targeting cancer metabolism – revisiting the Warburg effects. Toxicol Res 2016;32:177–93. PubMed PMC
Porstmann T, Santos CR, Lewis C, et al. . A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem Soc Trans 2009;37:278–83. PubMed
Scharping NE, Menk AV, Moreci RS, et al. . Delgoffe correspondence GM. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 2016;45:374–88. PubMed PMC
Zhang Y, Kwok-Shing Ng P, Kucherlapati M, et al. . A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 2017;31:820–32.e3. PubMed PMC
Grabiner BC, Nardi V, Birsoy K, et al. . A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014;4:554–63. PubMed PMC
Cheng H, Zou Y, Ross JS, et al. . RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors. Cancer Discov 2015;5:1262–70. PubMed PMC
Joly MM, Hicks DJ, Jones B, et al. . Rictor/mTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res 2016;76:4752–64. PubMed PMC
Laplante M, Sabatini DM.. MTOR signaling in growth control and disease. Cell 2012;149:274–93. PubMed PMC
Klempner SJ, Myers AP, Cantley LC.. What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov 2013;3:1345–54. PubMed PMC
Magaway C, Kim E, Jacinto E.. Targeting mTOR and metabolism in cancer: lessons and innovations. Cells 2019;8:1584. PubMed PMC
Mossmann D, Park S, Hall MN.. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 2018;18:744–57. PubMed
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37:614–36. PubMed
Raices M, Maruyama H, Dillin A, Karlseder J.. Uncoupling of longevity and telomere length in C. elegans. PLOS Genet 2005;1:e30. PubMed PMC
Parrinello S, Samper E, Krtolica A, et al. . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003;5:741–7. PubMed PMC
Tang DG, Tokumoto YM, Apperly JA, et al. . Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science 2001;291:868–71. PubMed
Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300. PubMed
Kitani K, Ivy GO.. “I thought, thought, thought for four months in vain and suddenly the idea came” – an interview with Denham and Helen Harmanmitochondrial dysfunction and ageing. Biogerontology 2003;4:401–12. PubMed
Andziak B, O’Connor TP, Buffenstein R.. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 2005;126:1206–12. PubMed
Corona M, Hughes KA, Weaver DB, Robinson GE.. Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 2005;126:1230–8. PubMed
Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 2006;5:2087–102. PubMed
McConnell BB, Starborg M, Brookes S, Peters G.. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 1998;8:351–4. PubMed
Itahana K, Dimri G, Campisi J.. Regulation of cellular senescence by p53. Eur J Biochem 2001;268:2784–91. PubMed
Jacobs JJL, De Lange T.. p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 2005;4:1364–8. PubMed
Serrano M, Lin AW, McCurrach ME, et al. . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88:593–602. PubMed
Zhu J, Woods D, McMahon M, Bishop JM.. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998;12:2997–3007. PubMed PMC
Lin AW, Barradas M, Stone JC, et al. . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998;12:3008–19. PubMed PMC
Deng Q, Liao R, Wu B-L, Sun P.. High intensity Ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 2004;279:1050–9. PubMed
Klein LE, Freeze BS, Smith AB, III, Horwitz SB.. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle 2005;4:501–7. PubMed
Roninson IB, Dokmanovic M.. Induction of senescence-associated growth inhibitors in the tumor-suppressive function of retinoids. J Cell Biochem 2003;88:83–94. PubMed
Wang X, Wong SCH, Pan J, et al. . Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res 1998;58:5019–22. PubMed
López-Otín C, Blasco MA, Partridge L, et al. . The hallmarks of aging. Cell 2013;153:1194–217. PubMed PMC
Koga H, Kaushik S, Cuervo AM.. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 2011;10:205–15. PubMed PMC
Walters H, Cox L.. mTORC inhibitors as broad-spectrum therapeutics for age-related diseases. Int J Mol Sci 2018;19:2325. PubMed PMC
Qian S-B, Zhang X, Sun J, et al. . mTORC1 links protein quality and quantity control by sensing chaperone availability. J Biol Chem 2010;285:27385–95. PubMed PMC
Selman C, Tullet JMA, Wieser D, et al. . Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009;326:140–4. PubMed PMC
Zhang C, Cuervo AM.. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 2008;14:959–65. PubMed PMC
Barzilai N, Huffman DM, Muzumdar RH, Bartke A.. The critical role of metabolic pathways in aging. Diabetes 2012;61:1315–22. PubMed PMC
Yang S-B, Tien A-C, Boddupalli G, et al. . Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012;75:425–36. PubMed PMC
Fontana L, Partridge L, Longo VD.. Extending healthy life span-from yeast to humans. Science 2010;328:321–6. PubMed PMC
Mattison JA, Roth GS, Beasley TM, et al. . Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012;489:318–21. PubMed PMC
Colman RJ, Anderson RM, Johnson SC, et al. . Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325:201–4. PubMed PMC
Carroll B, Nelson G, Rabanal-Ruiz Y, et al. . Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J Cell Biol 2017;216:1949–57. PubMed PMC
Laberge R-M, Sun Y, Orjalo AV, et al. . MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 2015;17:1049–61. PubMed PMC
Herranz N, Gallage S, Mellone M, et al. . mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 2015;17:1205–17. PubMed PMC
Childs BG, Durik M, Baker DJ, van Deursen JM.. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 2015;21:1424–35. PubMed PMC
Korolchuk VI, Miwa S, Carroll B, von Zglinicki T.. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 2017;21:7–13. PubMed PMC
Morita M, Gravel S-P, Chénard V, et al. . mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 2013;18:698–711. PubMed
Lerner C, Bitto A, Pulliam D, et al. . Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts. Aging Cell 2013;12:966–77. PubMed PMC
Yilmaz ÖH, Valdez R, Theisen BK, et al. . Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006;441:475–82. PubMed
Chen C, Liu Y, Liu R, et al. . TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008;205:2397–408. PubMed PMC
Gan B, Sahin E, Jiang S, et al. . mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008;105:19384–9. PubMed PMC
Jang Y-Y, Sharkis SJ.. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007;110:3056–63. PubMed PMC
Yilmaz ÖH, Katajisto P, Lamming DW, et al. . mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012;486:490–5. PubMed PMC
Chen T, Shen L, Yu J, et al. . Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 2011;10:908–11. PubMed
Gyurus E, Kaposztas Z, Kahan BD.. Sirolimus therapy predisposes to new-onset diabetes mellitus after renal transplantation: a long-term analysis of various treatment regimens. Transplant Proc 2011;43:1583–92. PubMed
Holdaas H, Potena L, Saliba F.. mTOR inhibitors and dyslipidemia in transplant recipients: a cause for concern? Transplant Rev 2015;29:93–102. PubMed
Nishino M, Boswell EN, Hatabu H, et al. . Drug-related pneumonitis during mammalian target of rapamycin inhibitor therapy: radiographic pattern-based approach in Waldenström macroglobulinemia as a paradigm. Oncologist 2015;20:1077–83. PubMed PMC