Association of Serum Bilirubin and Functional Variants of Heme Oxygenase 1 and Bilirubin UDP-Glucuronosyl Transferase Genes in Czech Adult Patients with Non-Alcoholic Fatty Liver Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-RVO-VFN64165
Ministry of Health
Progres Q25/LF1
Charles University
PubMed
34943103
PubMed Central
PMC8698489
DOI
10.3390/antiox10122000
PII: antiox10122000
Knihovny.cz E-zdroje
- Klíčová slova
- HMOX1, NAFLD, NASH, UGT1A1, bilirubin, bilirubin UDP-glucuronosyl transferase, heme oxygenase 1, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide. The aim of our study was to assess the role of bilirubin, and the heme oxygenase 1 (HMOX1) and bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variants, which are involved in bilirubin homeostasis, in the NAFLD development in adult patients. The study was performed on 84 patients with NAFLD and 103 age/sex-matched controls. Routine biochemistry, inflammatory markers, adipokines, and the fibrosis/steatohepatitis stage were determined in the NAFLD patients. The (GT)n/(TA)n dinucleotide variations in HMOX1/UGT1A1 gene promoters, respectively, were analyzed by fragment analysis. Compared to controls, serum bilirubin concentrations in NAFLD patients tended to be decreased, while the prevalence of phenotypic Gilbert syndrome was significantly low. Genetic variations in HMOX1 and UGT1A1 gene promoters did not differ between NAFLD patients and controls, and no relationship was found in the NAFLD patients between these gene variants and any of the laboratory or histological parameters. In conclusion, metabolism of bilirubin is dysregulated in NAFLD patients, most likely due to increased oxidative stress, since frequencies of the major functional variants in the HMOX1 or UGT1A1 gene promoters did not have any effect on development of NAFLD in adult patients.
Zobrazit více v PubMed
Marchesini G., Bugianesi E., Forlani G., Cerrelli F., Lenzi M., Manini R., Natale S., Vanni E., Villanova N., Melchionda N., et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–923. doi: 10.1053/jhep.2003.50161. PubMed DOI
Chalasani N., Younossi Z., LaVine J.E., Charlton M., Cusi K., Rinella M., Harrison S.A., Brunt E.M., Sanyal A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–357. doi: 10.1002/hep.29367. PubMed DOI
Yilmaz Y. Review article: Is non-alcoholic fatty liver disease a spectrum, or are steatosis and non-alcoholic steatohepatitis distinct conditions? Aliment. Pharmacol. Ther. 2012;36:815–823. doi: 10.1111/apt.12046. PubMed DOI
Day C.P., James O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2. PubMed DOI
Cortez-Pinto H., de Moura M.C., Day C.P. Non-alcoholic steatohepatitis: From cell biology to clinical practice. J. Hepatol. 2006;44:197–208. doi: 10.1016/j.jhep.2005.09.002. PubMed DOI
Pessayre D., Fromenty B. NASH: A mitochondrial disease. J. Hepatol. 2005;42:928–940. doi: 10.1016/j.jhep.2005.03.004. PubMed DOI
Seki S., Kitada T., Yamada T., Sakaguchi H., Nakatani K., Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 2002;37:56–62. doi: 10.1016/S0168-8278(02)00073-9. PubMed DOI
Hernaez R. Genetic factors associated with the presence and progression of nonalcoholic fatty liver disease: A narrative re-view. Gastroenterol. Hepatol. 2012;35:32–41. doi: 10.1016/j.gastrohep.2011.08.002. PubMed DOI
Exner M., Minar E., Wagner O., Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free. Radic. Biol. Med. 2004;37:1097–1104. doi: 10.1016/j.freeradbiomed.2004.07.008. PubMed DOI
Chang P.-F., Lin Y.-C., Liu K., Yeh S.-J., Ni Y.-H. Heme oxygenase-1 gene promoter polymorphism and the risk of pediatric nonalcoholic fatty liver disease. Int. J. Obes. 2015;39:1236–1240. doi: 10.1038/ijo.2015.46. PubMed DOI
Malaguarnera L., Madeddu R., Palio E., Arena N., Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J. Hepatol. 2005;42:585–591. doi: 10.1016/j.jhep.2004.11.040. PubMed DOI
Salley T.N., Mishra M., Tiwari S., Jadhav A., Ndisang J.F. The Heme Oxygenase System Rescues Hepatic Deterioration in the Condition of Obesity Co-Morbid with Type-2 Diabetes. PLoS ONE. 2013;8:e79270. doi: 10.1371/journal.pone.0079270. PubMed DOI PMC
Hinds T.D., Jr., Sodhi K., Meadows C., Fedorova L., Puri N., Kim D.H., Peterson S.J., Shapiro J.I., Abraham N.G., Kappas A. Increased HO-1 levels ameliorate fatty liver development through a reduction of heme and recruitment of FGF21. Obesity. 2014;22:705–712. doi: 10.1002/oby.20559. PubMed DOI PMC
Vítek L., Schwertner H.A. The Heme Catabolic Pathway and its Protective Effects on Oxidative Stress-Mediated Diseases. Adv. Appl. Microbiol. 2007;43:1–57. doi: 10.1016/s0065-2423(06)43001-8. PubMed DOI
Vítek L., Tiribelli C. Bilirubin: The yellow hormone? J. Hepatol. 2021;75:1485–1490. doi: 10.1016/j.jhep.2021.06.010. PubMed DOI
Lin Y.-C., Chang P.-F., Hu F.-C., Chang M.-H., Ni Y.-H. Variants in the UGT1A1 gene and the risk of pediatric nonalco-holic fatty liver disease. Pediatrics. 2009;124:E1221–E1227. doi: 10.1542/peds.2008-3087. PubMed DOI
Vítek L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020;40:1335–1351. doi: 10.1002/med.21660. PubMed DOI
Kwak M.-S., Kim D., Chung G.E., Kang S.J., Park M.J., Kim Y.J., Yoon J.-H., Lee H.-S. Serum bilirubin levels are inversely associated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2012;18:383–390. doi: 10.3350/cmh.2012.18.4.383. PubMed DOI PMC
Salomone F., Volti G.L., Rosso C., Grosso G., Bugianesi E. Unconjugated bilirubin, a potent endogenous antioxidant, is decreased in patients with non-alcoholic steatohepatitis and advanced fibrosis. J. Gastroenterol. Hepatol. 2013;28:1202–1208. doi: 10.1111/jgh.12155. PubMed DOI
Hjelkrem M., Morales A., Williams C.D., Harrison S.A. Unconjugated hyperbilirubinemia is inversely associated with non-alcoholic steatohepatitis (NASH) Aliment. Pharmacol. Ther. 2012;35:1416–1423. doi: 10.1111/j.1365-2036.2012.05114.x. PubMed DOI
Puri K., Nobili V., Melville K., Corte C.D., Sartorelli M.R., Lopez R., Feldstein A.E., Alkhouri N. Serum Bilirubin Level Is Inversely Associated With Nonalcoholic Steatohepatitis in Children. J. Pediatr. Gastroenterol. Nutr. 2013;57:114–118. doi: 10.1097/MPG.0b013e318291fefe. PubMed DOI
Luo L., An P., Jia X., Yue X., Zheng S., Liu S., Chen Y., An W., Winkler C.A., Duan Z. Genetically Regulated Bilirubin and Risk of Non-alcoholic Fatty Liver Disease: A Mendelian Randomization Study. Front. Genet. 2018;9:662. doi: 10.3389/fgene.2018.00662. PubMed DOI PMC
Kunutsor S.K., Frysz M., Verweij N., Kieneker L.M., Bakker S.J.L., Dullaart R.P.F. Circulating total bilirubin and risk of non-alcoholic fatty liver disease in the PREVEND study: Observational findings and a Mendelian randomization study. Eur. J. Epidemiol. 2020;35:123–137. doi: 10.1007/s10654-019-00589-0. PubMed DOI PMC
Bellarosa C., Bedogni G., Bianco A., Cicolini S., Caroli D., Tiribelli C., Sartorio A. Association of Serum Bilirubin Level with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study of 1672 Obese Children. J. Clin. Med. 2021;10:2812. doi: 10.3390/jcm10132812. PubMed DOI PMC
Tarantino G., Colao A., Capone D., Conca P., Tarantino M., Grimaldi E., Chianese D., Finelli C., Contaldo F., Scopacasa F., et al. Circulating levels of cytochrome C, gamma-glutamyl transferase, triglycerides and unconjugated bilirubin in overweight/obese patients with non-alcoholic fatty liver disease. J. Boil. Regul. Homeost. Agents. 2011;25:47–56. PubMed
Chisholm J., Seki Y., Toouli J., Stahl J., Collins J., Kow L. Serologic predictors of nonalcoholic steatohepatitis in a popula-tion undergoing bariatric surgery. Surg. Obes. Relat. Dis. 2012;8:416–422. doi: 10.1016/j.soard.2011.06.010. PubMed DOI
Chalasani N., Younossi Z., Lavine J.E., Diehl A.M., Brunt E.M., Cusi K., Charlton M., Sanyal A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Dis-eases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–2023. doi: 10.1002/hep.25762. PubMed DOI
Jiraskova A., Lenicek M., Vitek L. Simultaneous genotyping of microsatellite variations in HMOX1 and UGT1A1 genes us-ing multicolored capillary electrophoresis. Clin. Biochem. 2010;43:697–699. doi: 10.1016/j.clinbiochem.2010.01.006. PubMed DOI
Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.-C., Torbenson M.S., Unalp-Arida A., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Wai C.-T., Greenson J.K., Fontana R.J., Kalbfleisch J.D., Marrero J.A., Conjeevaram H.S., Lok A.S.-F. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–526. doi: 10.1053/jhep.2003.50346. PubMed DOI
Sterling R.K., Lissen E., Clumeck N., Sola R., Correa M.C., Montaner J., Sulkowski M.S., Torriani F.J., Dieterich D.T., Thomas D.L., et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–1325. doi: 10.1002/hep.21178. PubMed DOI
Angulo P., Hui J.M., Marchesini G., Bugianesi E., George J., Farrell G.C., Enders F., Saksena S., Burt A.D., Bida J.P., et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–854. doi: 10.1002/hep.21496. PubMed DOI
Harrison S.A., Oliver D., Arnold H.L., Gogia S., Neuschwander-Tetri B.A. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut. 2008;57:1441–1447. doi: 10.1136/gut.2007.146019. PubMed DOI
Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science. 1987;235:1043–1046. doi: 10.1126/science.3029864. PubMed DOI
Wagner K.-H., Wallner M., Moelzer C., Gazzin S., Bulmer A.C., Tiribelli C., Vitek L. Looking to the horizon: The role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 2015;129:1–25. doi: 10.1042/CS20140566. PubMed DOI
Lin J.P., Vitek L., Schwertner H.A. Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardio-vascular disease. Clin. Chem. 2010;56:1535–1543. doi: 10.1373/clinchem.2010.151043. PubMed DOI
Urbanek P., Lenicek M., Muchova L., Subhanova I., Dusek L., Kasprikova N., Hrabal P., Bruha R., Vitek L. No association of promoter variations of HMOX1 and UGT1A1 genes with liver injury in chronic hepatitis C. Ann. Hepatol. 2011;10:445–451. doi: 10.1016/S1665-2681(19)31511-X. PubMed DOI
Belo L., Nascimento H., Kohlova M., Bronze-da-Rocha E., Fernandes J., Costa E., Catarino C., Aires L., Mansilha H.F., Rocha-Pereira P., et al. Body fat percentage is a major determinant of total bilirubin independently of UGT1A1*28 polymor-phism in young obese. PLoS ONE. 2014;9:e98467. doi: 10.1371/journal.pone.0098467. PubMed DOI PMC
Vítek L. The Role of Bilirubin in Diabetes, Metabolic Syndrome, and Cardiovascular Diseases. Front. Pharmacol. 2012;3:55. doi: 10.3389/fphar.2012.00055. PubMed DOI PMC
Novotný L., Vitek L. Inverse Relationship between Serum Bilirubin and Atherosclerosis in Men: A Meta-Analysis of Published Studies. Exp. Biol. Med. 2003;228:568–571. doi: 10.1177/15353702-0322805-29. PubMed DOI
Korkmaz H., Unler G.K., Gokturk H.S., Schmidt W.E., Kebapcilar L. Noninvasive estimation of disease activity and liver fibrosis in nonalcoholic fatty liver disease using anthropometric and biochemical characteristics, including insulin, insulin resistance, and 13C-methionine breath test. Eur. J. Gastroenterol. Hepatol. 2015;27:1137–1143. doi: 10.1097/MEG.0000000000000407. PubMed DOI
Eng K., Lopez R., Liccardo D., Nobili V., Alkhouri N. A non-invasive prediction model for non-alcoholic steatohepatitis in paediatric patients with non-alcoholic fatty liver disease. Dig. Liver Dis. 2014;46:1008–1013. doi: 10.1016/j.dld.2014.07.016. PubMed DOI
Poynard T., Ratziu V., Charlotte F., Messous D., Munteanu M., Imbert-Bismut F., Massard J., Bonyhay L., Tahiri M., Thabut D., et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:34. doi: 10.1186/1471-230X-6-34. PubMed DOI PMC
Demir M., Lang S., Schlattjan M., Drebber U., Wedemeyer I., Nierhoff D., Kaul I., Sowa J., Canbay A., Töx U., et al. NIKEI: A New Inexpensive and Non-Invasive Scoring System to Exclude Advanced Fibrosis in Patients with NAFLD. PLoS ONE. 2013;8:e58360. doi: 10.1371/journal.pone.0058360. PubMed DOI PMC
Ratziu V., Massard J., Charlotte F., Messous D., Imbert-Bismut F., Bonyhay L., Tahiri M., Munteanu M., Thabut D., Ca-dranel J.F., et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol. 2006;6:6. doi: 10.1186/1471-230X-6-6. PubMed DOI PMC
Stepanova M., Aquino R., Alsheddi A., Gupta R., Fang Y., Younossi Z. Clinical predictors of fibrosis in patients with chronic liver disease. Aliment. Pharmacol. Ther. 2010;31:1085–1094. doi: 10.1111/j.1365-2036.2010.04266.x. PubMed DOI