The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases

. 2012 ; 3 () : 55. [epub] 20120403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22493581

Grantová podpora
F32 NS009770 NINDS NIH HHS - United States

Bilirubin belongs to a phylogenetically old superfamily of tetrapyrrolic compounds, which have multiple biological functions. Although for decades bilirubin was believed to be only a waste product of the heme catabolic pathway at best, and a potentially toxic compound at worst; recent data has convincingly demonstrated that mildly elevated serum bilirubin levels are strongly associated with a lower prevalence of oxidative stress-mediated diseases. Indeed, serum bilirubin has been consistently shown to be negatively correlated to cardiovascular diseases (CVD), as well as to CVD-related diseases and risk factors such as arterial hypertension, diabetes mellitus, metabolic syndrome, and obesity. In addition, the clinical data are strongly supported by evidence arising from both in vitro and in vivo experimental studies. This data not only shows the protective effects of bilirubin per se; but additionally, of other products of the heme catabolic pathway such as biliverdin and carbon monoxide, as well as its key enzymes (heme oxygenase and biliverdin reductase); thus, further underlining the biological impacts of this pathway. In this review, detailed information on the experimental and clinical evidence between the heme catabolic pathway and CVD, and those related diseases such as diabetes, metabolic syndrome, and obesity is provided. All of these pathological conditions represent an important threat to human civilization, being the major killers in developed countries, with a steadily increasing prevalence. Thus, it is extremely important to search for novel markers of these diseases, as well as for novel therapeutic modalities to reverse this unfavorable situation. The heme catabolic pathway seems to fulfill the criteria for both diagnostic purposes as well as for potential therapeutical interventions.

Zobrazit více v PubMed

Abdel Aziz M. T., El-Asmar M. F., El Nadi E. G., Wassef M. A., Ahmed H. H., Rashed L. A., Obaia E. M., Sabry D., Hassouna A. A., Abdel Aziz A. T. (2010). The effect of curcumin on insulin release in rat-isolated pancreatic islets. Angiology 61, 557–56610.1177/0003319709356424 PubMed DOI

Andersson C., Weeke P., Fosbol E. L., Brendorp B., Kober L., Coutinho W., Sharma A. M., Van Gaal L., Finer N., James W. P., Caterson I. D., Rode R. A., Torp-Pedersen C. (2009). Acute effect of weight loss on levels of total bilirubin in obese, cardiovascular high-risk patients: an analysis from the lead-in period of the sibutramine cardiovascular outcome trial. Metab. Clin. Exp. 58, 1109–111510.1016/j.metabol.2009.04.003 PubMed DOI

Bach F. H. (2005). Heme oxygenase-1: a therapeutic amplification funnel. FASEB J. 19, 1216–121910.1096/fj.04-3485cmt PubMed DOI

Bao W., Song F., Li X., Rong S., Yang W., Wang D., Xu J., Fu J., Zhao Y., Liu L. (2010a). Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am. J. Epidemiol. 172, 631–63610.1093/aje/kwq162 PubMed DOI

Bao W., Song F., Li X., Rong S., Yang W., Zhang M., Yao P., Hao L., Yang N., Hu F. B., Liu L. (2010b). Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus. PLoS ONE 5, e12371.10.1371/journal.pone.0012371 PubMed DOI PMC

Basiglio C. L., Arriaga S. M., Pelusa F., Almara A. M., Kapitulnik J., Mottino A. D. (2010). Complement activation and disease: protective effects of hyperbilirubinaemia. Clin. Sci. 118, 99–11310.1042/CS20080540 PubMed DOI

Bernard K., Ritzel G., Steiner K. U. (1954). Über eine biologische bedeutung der gallenfarbstoffe: bilirubin und biliverdin als antioxydantien für das vitamin A und die essentiellen Fettsäuren. Helv. Chim. Acta 37, 306–31310.1002/hlca.19540370139 DOI

Bhuiyan A. R., Srinivasan S. R., Chen W., Sultana A., Berenson G. S. (2008). Association of serum bilirubin with pulsatile arterial function in asymptomatic young adults: the Bogalusa Heart Study. Metab. Clin. Exp. 57, 612–61610.1016/j.metabol.2007.12.003 PubMed DOI

Bonifaz V., Shan Y., Lambrecht R. W., Donohue S. E., Moschenross D., Bonkovsky H. L. (2009). Effects of silymarin on hepatitis C virus and haem oxygenase-1 gene expression in human hepatoma cells. Liver Int. 29, 366–37310.1111/j.1478-3231.2008.01833.x PubMed DOI PMC

Burgess A., Li M., Vanella L., Kim D. H., Rezzani R., Rodella L., Sodhi K., Canestraro M., Martasek P., Peterson S. J., Kappas A., Abraham N. G. (2010). Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension 56, 1124–113010.1161/HYPERTENSIONAHA.110.151423 PubMed DOI PMC

Chen Y. H., Chau L. Y., Chen J. W., Lin S. J. (2008). Serum bilirubin and ferritin levels link between heme oxygenase-1 gene promoter polymorphism and susceptibility to coronary artery disease in diabetic patients. Diabetes Care 31, 1615–162010.2337/dc07-2126 PubMed DOI PMC

Cheriyath P., Gorrepati V. S., Peters I., Nookala V., Murphy M. E., Srouji N., Fischman D. (2010). High total bilirubin as a protective factor for diabetes mellitus: an analysis of NHANES data from 1996–2006. J. Clin. Med. Res. 2, 201–206 PubMed PMC

Choi S. H., Yun K. E., Choi H. J. (2011). Relationships between serum total bilirubin levels and metabolic syndrome in Korean adults. Nutr. Metab. Cardiovasc. Dis.10.1016/j.numecd.2011.03.001 [Epub ahead of print]. PubMed DOI

Csongradi E., Docarmo J. M., Dubinion J. H., Vera T., Stec D. E. (2012). Chronic HO-1 induction with cobalt protoporphyrin (CoPP) treatment increases oxygen consumption, activity, heat production and lowers body weight in obese melanocortin-4 receptor-deficient mice. Int. J. Obes. 36, 244–25310.1038/ijo.2011.78 PubMed DOI PMC

Dekker D., Dorresteijn M. J., Pijnenburg M., Heemskerk S., Rasing-Hoogveld A., Burger D. M., Wagener F. A., Smits P. (2011). The bilirubin-increasing drug atazanavir improves endothelial function in patients with type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 31, 458–46310.1161/ATVBAHA.110.211789 PubMed DOI

Frei B., Stocker R., Ames B. N. (1988). Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci. U.S.A. 85, 9748–975210.1073/pnas.85.24.9748 PubMed DOI PMC

Fu Y. Y., Kang K. J., Ahn J. M., Kim H. R., Na K. Y., Chae D. W., Kim S., Chin H. J. (2010). Hyperbilirubinemia reduces the streptozotocin-induced pancreatic damage through attenuating the oxidative stress in the Gunn rat. Tohoku J. Exp. Med. 222, 265–27310.1620/tjem.222.265 PubMed DOI

Fujii M., Inoguchi T., Sasaki S., Maeda Y., Zheng J., Kobayashi K., Takayanagi R. (2010). Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int. 78, 905–91910.1038/ki.2010.265 PubMed DOI

Fukui M., Tanaka M., Shiraishi E., Harusato I., Hosoda H., Asano M., Hasegawa G., Nakamura N. (2008). Relationship between serum bilirubin and albuminuria in patients with type 2 diabetes. Kidney Int. 74, 1197–120110.1038/ki.2008.398 PubMed DOI

Fukui M., Tanaka M., Yamazaki M., Hasegawa G., Nishimura M., Iwamoto N., Ono T., Imai S., Nakamura N. (2011). Low serum bilirubin concentration in haemodialysis patients with Type 2 diabetes. Diabet. Med. 28, 96–9910.1111/j.1464-5491.2010.03173.x PubMed DOI

Giacco F., Brownlee M. (2010). Oxidative stress and diabetic complications. Circ. Res. 107, 1058–107010.1161/CIRCRESAHA.110.223545 PubMed DOI PMC

Gutierres V. O., Pinheiro C. M., Assis R. P., Vendramini R. C., Pepato M. T., Brunetti I. L. (2011). Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. Br. J. Nutr. 1–910.1017/S0007114511005769 [Epub ahead of print]. PubMed DOI

Han S. S., Na K. Y., Chae D. W., Kim Y. S., Chin H. J. (2010). High serum bilirubin is associated with the reduced risk of diabetes mellitus and diabetic nephropathy. Tohoku J. Exp. Med. 221, 133–14010.1620/tjem.221.133 PubMed DOI

Hayashi S., Omata Y., Sakamoto H., Higashimoto Y., Hara T., Sagara Y., Noguchi M. (2004). Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336, 241–25010.1016/j.gene.2004.04.002 PubMed DOI

Henningsson R., Alm P., Ekstrom P., Lundquist I. (1999). Heme oxygenase and carbon monoxide: regulatory roles in islet hormone release: a biochemical, immunohistochemical, and confocal microscopic study. Diabetes 48, 66–7610.2337/diabetes.48.1.66 PubMed DOI

Huang S. S., Huang P. H., Leu H. B., Wu T. C., Lin S. J., Chen J. W. (2010). Serum bilirubin predicts long-term clinical outcomes in patients with cardiac syndrome X. Heart 96, 1227–123210.1136/hrt.2009.192393 PubMed DOI

Hwang H. J., Lee S. W., Kim S. H. (2011). Relationship between bilirubin and C-reactive protein. Clin. Chem. Lab. Med. 49, 1823–182810.1515/cclm.2011.662 PubMed DOI

Ikeda N., Inoguchi T., Sonoda N., Fujii M., Takei R., Hirata E., Yokomizo H., Zheng J., Maeda Y., Kobayashi K., Takayanagi R. (2011). Biliverdin protects against the deterioration of glucose tolerance in db/db mice. Diabetologia 54, 2183–219110.1007/s00125-011-2197-2 PubMed DOI

Inoguchi T., Sasaki S., Kobayashi K., Takayanagi R., Yamada T. (2007). Relationship between Gilbert syndrome and prevalence of vascular complications in patients with diabetes. JAMA 298, 1398–140010.1001/jama.298.12.1398-b PubMed DOI

Jirásková A., Jovanovská J., Škrha J., Vítek L. (2011). Association of low bilirubin levels and promoter variations in UGT1A1 gene with diabetes mellitus type 2 (abstract). Hepatol. Int. 5, 37

Jonas J. C., Guiot Y., Rahier J., Henquin J. C. (2003). Haeme-oxygenase 1 expression in rat pancreatic beta cells is stimulated by supraphysiological glucose concentrations and by cyclic AMP. Diabetologia 46, 1234–124410.1007/s00125-003-1174-9 PubMed DOI

Kalousová M., Novotný L., Zima T., Braun M., Vítek L. (2005). Decreased levels of advanced glycation end-products in patients with Gilbert syndrome. Cell. Mol. Biol. 51, 387–392 PubMed

Kapitulnik J., Maines M. D. (2009). Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol. Sci. 30, 129–13710.1016/j.tips.2008.12.003 PubMed DOI

Kimm H., Yun J. E., Jo J., Jee S. H. (2009). Low serum bilirubin level as an independent predictor of stroke incidence: a prospective study in Korean men and women. Stroke 40, 3422–342710.1161/STROKEAHA.109.560649 PubMed DOI

Ko G. T., Chan J. C., Woo J., Lau E., Yeung V. T., Chow C. C., Li J. K., So W. Y., Cockram C. S. (1996). Serum bilirubin and cardiovascular risk factors in a Chinese population. J. Cardiovasc. Risk 3, 459–46310.1097/00043798-199610000-00008 PubMed DOI

Kwon K. M., Kam J. H., Kim M. Y., Kim M. Y., Chung C. H., Kim J. K., Linton J. A., Eom A., Koh S. B., Kang H. T. (2011). Inverse association between total bilirubin and metabolic syndrome in rural korean women. J. Womens Health 20, 963–96910.1089/jwh.2010.2453 PubMed DOI

Lavrovsky Y., Drummond G. S., Abraham N. G. (1996). Downregulation of the human heme oxygenase gene by glucocorticoids and identification of 56b regulatory elements. Biochem. Biophys. Res. Commun. 218, 759–76510.1006/bbrc.1996.0135 PubMed DOI

Lee E. H., Park J. E., Choi Y. J., Huh K. B., Kim W. Y. (2008). A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutr. Res. Pract. 2, 295–30010.4162/nrp.2008.2.4.326 PubMed DOI PMC

Lerner-Marmarosh N., Miralem T., Gibbs P. E., Maines M. D. (2007). Regulation of TNF-alpha-activated PKC-zeta signaling by the human biliverdin reductase: identification of activating and inhibitory domains of the reductase. FASEB J. 21, 3949–396210.1096/fj.07-8544com PubMed DOI

Lerner-Marmarosh N., Miralem T., Gibbs P. E., Maines M. D. (2008). Human biliverdin reductase is an ERK activator; hBVR is an ERK nuclear transporter and is required for MAPK signaling. Proc. Natl. Acad. Sci. U.S.A. 105, 6870–687510.1073/pnas.0800750105 PubMed DOI PMC

Lerner-Marmarosh N., Shen J., Torno M. D., Kravets A., Hu Z., Maines M. D. (2005). Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc. Natl. Acad. Sci. U.S.A. 102, 7109–711410.1073/pnas.0502173102 PubMed DOI PMC

Li M., Kim D. H., Tsenovoy P. L., Peterson S. J., Rezzani R., Rodella L. F., Aronow W. S., Ikehara S., Abraham N. G. (2008). Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57, 1526–153510.2337/db07-1764 PubMed DOI

Lin J. P., Vítek L., Schwertner H. A. (2010). Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease. Clin. Chem. 56, 1535–1543,10.1373/clinchem.2010.151043 PubMed DOI

Lin L. Y., Kuo H. K., Hwang J. J., Lai L. P., Chiang F. T., Tseng C. D., Lin J. L. (2009a). Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis 203, 563–56810.1016/j.atherosclerosis.2008.07.021 PubMed DOI

Lin Y. C., Chang P. F., Hu F. C., Chang M. H., Ni Y. H. (2009b). Variants in the UGT1A1 gene and the risk of pediatric nonalcoholic fatty liver disease. Pediatrics 124, e1221–e122710.1542/peds.2008-3087 PubMed DOI

Lin R., Wang X., Zhou W., Fu W., Wang Y., Huang W., Jin L. (2011). Association of a BLVRA common polymorphism with essential hypertension and blood pressure in Kazaks. Clin. Exp. Hypertens. 33, 294–29810.3109/10641963.2010.531854 PubMed DOI

Maines M. D. (2005). New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology (Bethesda) 20, 382–38910.1152/physiol.00029.2005 PubMed DOI

Maines M. D. (2010). Potential application of biliverdin reductase and its fragments to modulate insulin/IGF-1/MAPK/PI3-K signaling pathways in therapeutic settings. Curr. Drug Targets 11, 1586–1594 PubMed

Maines M. D., Miralem T., Lerner-Marmarosh N., Shen J., Gibbs P. E. (2007). Human biliverdin reductase, a previously unknown activator of protein kinase C betaII. J. Biol. Chem. 282, 8110–812210.1074/jbc.M513427200 PubMed DOI

Mazzone G. L., Rigato I., Ostrow J. D., Bossi F., Bortoluzzi A., Sukowati C. H., Tedesco F., Tiribelli C. (2009). Bilirubin inhibits the TNFalpha-related induction of three endothelial adhesion molecules. Biochem. Biophys. Res. Commun. 386, 338–34410.1016/j.bbrc.2009.06.029 PubMed DOI

McCarty M. F. (2007). “Iatrogenic Gilbert syndrome” – a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med. Hypotheses 69, 974–99410.1016/j.mehy.2006.12.065 PubMed DOI

Moura L. P., Puga G. M., Beck W. R., Teixeira I. P., Ghezzi A. C., Silva G. A., Mello M. A. (2011). Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis. 10, 77.10.1186/1476-511X-10-77 PubMed DOI PMC

Muchová L., Wong R. J., Hsu M., Morioka I., Vítek L., Zelenka J., Schroder H., Stevenson D. K. (2007). Statin treatment increases formation of carbon monoxide and bilirubin in mice: a novel mechanism of in vivo antioxidant protection. Can. J. Physiol. Pharmacol. 85, 800–81010.1139/Y07-077 PubMed DOI

Ndisang J. F. (2010). Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediators Inflamm.10.1155/2010/359732 [Epub 2010 May 18]. PubMed DOI PMC

Ndisang J. F., Jadhav A. (2009a). Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes. Am. J. Physiol. Endocrinol. Metab. 296, E829–E84110.1152/ajpendo.90241.2008 PubMed DOI

Ndisang J. F., Jadhav A. (2009b). Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats. Endocrinology 150, 2627–263610.1210/en.2008-1370 PubMed DOI

Ndisang J. F., Jadhav A. (2010a). The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R211–R22310.1152/ajpregu.91000.2008 PubMed DOI

Ndisang J. F., Lane N., Syed N., Jadhav A. (2010b). Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology 151, 549–56010.1210/en.2009-0471 PubMed DOI

Nicolai A., Li M., Kim D. H., Peterson S. J., Vanella L., Positano V., Gastaldelli A., Rezzani R., Rodella L. F., Drummond G., Kusmic C., L’Abbate A., Kappas A., Abraham N. G. (2009). Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats. Hypertension 53, 508–51510.1161/HYPERTENSIONAHA.108.124701 PubMed DOI PMC

Novotný L., Vítek L. (2003). Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Exp. Biol. Med. 228, 568–571 PubMed

Oda E. (2010). Bilirubin is negatively associated with A1C independently of fasting plasma glucose, age, obesity, inflammation, hemoglobin, and iron in apparently healthy Japanese men and women. Diabetes Care 33, e131.10.2337/dc09-1253 PubMed DOI

Oda E., Kawai R. (2010). Bilirubin is negatively associated with hemoglobin a(1c) independently of other cardiovascular risk factors in apparently healthy Japanese men and women. Circ. J. 75, 190–19510.1253/circj.CJ-10-0645 PubMed DOI

Ohnaka K., Kono S., Inoguchi T., Yin G., Morita M., Adachi M., Kawate H., Takayanagi R. (2010). Inverse associations of serum bilirubin with high sensitivity C-reactive protein, glycated hemoglobin, and prevalence of type 2 diabetes in middle-aged and elderly Japanese men and women. Diabetes Res. Clin. Pract. 88, 103–11010.1016/j.diabres.2009.12.022 PubMed DOI

Pachori A. S., Smith A., McDonald P., Zhang L., Dzau V. J., Melo L. G. (2007). Heme-oxygenase-1-induced protection against hypoxia/reoxygenation is dependent on biliverdin reductase and its interaction with PI3K/Akt pathway. J. Mol. Cell. Cardiol. 43, 580–59210.1016/j.yjmcc.2007.08.003 PubMed DOI PMC

Pink R. C., Wicks K., Caley D. P., Punch E. K., Jacobs L., Carter D. R. (2011). Pseudogenes: pseudo-functional or key regulators in health and disease? RNA. 17, 792–798 PubMed PMC

Potenza M. A., Gagliardi S., Nacci C., Carratu’ M. R., Montagnani M. (2009). Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr. Med. Chem. 16, 94–11210.2174/092986709787002853 PubMed DOI

Rocuts F., Zhang X., Yan J., Yue Y., Thomas M., Bach F. H., Czismadia E., Wang H. (2010). Bilirubin promotes de novo generation of T regulatory cells. Cell Transplant. 19, 443–45110.3727/096368909X484680 PubMed DOI

Schwertner H. A., Jackson W. G., Tolan G. (1994). Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem. 40, 18–23 PubMed

Schwertner H. A., Vítek L. (2008). Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis 198, 1–1110.1016/j.atherosclerosis.2008.01.001 PubMed DOI

Sedlak T. W., Saleh M., Higginson D. S., Paul B. D., Juluri K. R., Snyder S. H. (2009). Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc. Natl. Acad. Sci. U.S.A. 106, 5171–517610.1073/pnas.0813132106 PubMed DOI PMC

Soares A. F., Guichardant M., Cozzone D., Bernoud-Hubac N., Bouzaidi-Tiali N., Lagarde M., Geloen A. (2005). Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radic. Biol. Med. 38, 882–88910.1016/j.freeradbiomed.2004.12.010 PubMed DOI

Soetikno V., Watanabe K., Sari F. R., Harima M., Thandavarayan R. A., Veeraveedu P. T., Arozal W., Sukumaran V., Lakshmanan A. P., Arumugam S., Suzuki K. (2011). Curcumin attenuates diabetic nephropathy by inhibiting PKC-alpha and PKC-beta1 activity in streptozotocin-induced type I diabetic rats. Mol. Nutr. Food Res. 55, 1655–166510.1002/mnfr.201100080 PubMed DOI

Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–104610.1126/science.3029864 PubMed DOI

Tanaka M., Fukui M., Tomiyasu K. I., Akabame S., Nakano K., Hasegawa G., Oda Y., Nakamura N. (2009). Low serum bilirubin concentration is associated with coronary artery calcification (CAC). Atherosclerosis 206, 287–29110.1016/j.atherosclerosis.2009.02.010 PubMed DOI

Tapan S., Dogru T., Tasci I., Ercin C. N., Ozgurtas T., Erbil M. K. (2009). Soluble CD40 ligand and soluble P-selectin levels in Gilbert’s syndrome: a link to protection against atherosclerosis? Clin. Biochem. 42, 791–79510.1016/j.clinbiochem.2009.01.009 PubMed DOI

Terauchi Y., Tsuji Y., Satoh S., Minoura H., Murakami K., Okuno A., Inukai K., Asano T., Kaburagi Y., Ueki K., Nakajima H., Hanafusa T., Matsuzawa Y., Sekihara H., Yin Y., Barrett J. C., Oda H., Ishikawa T., Akanuma Y., Komuro I., Suzuki M., Yamamura K., Kodama T., Suzuki H., Yamamura K., Kodama T., Suzuki H., Koyasu S., Aizawa S., Tobe K., Fukui Y., Yazaki Y., Kadowaki T. (1999). Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat. Genet. 21, 230–23510.1038/6023 PubMed DOI

Tonstad S., Butler T., Yan R., Fraser G. E. (2009). Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 32, 791–79610.2337/dc08-1886 PubMed DOI PMC

Unoki H., Yamagishi S. (2008). Advanced glycation end products and insulin resistance. Curr. Pharm. Des. 14, 987–98910.2174/138161208784139747 PubMed DOI

Vessal G., Akmali M., Najafi P., Moein M. R., Sagheb M. M. (2010). Silymarin and milk thistle extract may prevent the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Ren. Fail. 32, 733–73910.3109/0886022X.2010.486488 PubMed DOI

Vítek L., Jirsa M., Brodanová M., Kaláb M., Mareček Z., Danzig V., Novotný L., Kotal P. (2002). Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis 160, 449–45610.1016/S0021-9150(01)00601-3 PubMed DOI

Vítek L., Malíková I., Kvasnička J., Benáková H., Novotný L. (2007a). Relationship between serum bilirubin and markers of inflammation and oxidative stress. J. Gastroenterol. Hepatol. 22, A235–A23510.1111/j.1440-1746.2006.04564.x DOI

Vítek L., Novotný L., Šperl M., Holaj R., Spáčil J. (2006). The inverse association of elevated serum bilirubin levels with subclinical carotid atherosclerosis. Cerebrovasc. Dis. 21, 408 –414.10.1159/000091966 PubMed DOI

Vítek L., Ostrow J. D. (2009). Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des. 15, 2869–288310.2174/138161209789058237 PubMed DOI

Vítek L., Schwertner H. A. (2007b). The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 43, 1–5710.1016/S0065-2423(06)43001-8 PubMed DOI

Wegiel B., Gallo D., Csizmadia E., Roger T., Kaczmarek E., Harris C., Zuckerbraun B. S., Otterbein L. E. (2011). Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc. Natl. Acad. Sci. U.S.A. 108, 18849–1885410.1073/pnas.1108571108 PubMed DOI PMC

Won K. C., Moon J. S., Eun M. J., Yoon J. S., Chun K. A., Cho I. H., Kim Y. W., Lee H. W. (2006). A protective role for heme oxygenase-1 in INS-1 cells and rat islets that are exposed to high glucose conditions. J. Korean Med. Sci. 21, 418–42410.3346/jkms.2006.21.5.811 PubMed DOI PMC

Wu B. J., Chen K., Barter P. J., Rye K. A. (2012). Niacin inhibits vascular inflammation via the induction of heme oxygenase-1. Circulation 125, 150–15810.1161/CIRCULATIONAHA.111.062653 PubMed DOI

Wu T. W., Fung K. P., Yang C. C. (1994). Unconjugated bilirubin inhibits the oxidation of human low density lipoprotein better than Trolox. Life Sci. 54, 477–48110.1016/0024-3205(94)90140-6 PubMed DOI

Wu Y., Li M., Xu M., Bi Y., Li X., Chen Y., Ning G., Wang W. (2011). Low serum total bilirubin concentrations are associated with increased prevalence of metabolic syndrome in Chinese. J. Diabetes 3, 217–22410.1111/j.1753-0407.2011.00138.x PubMed DOI

Yamagishi S. I., Maeda S., Matsui T., Ueda S., Fukami K., Okuda S. (2011). Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta.10.1016/j.bbagen.2011.03.014 [Epub ahead of print]. PubMed DOI

Yasuda M., Kiyohara Y., Wang J. J., Arakawa S., Yonemoto K., Doi Y., Ninomiya T., Ishibashi T. (2011). High serum bilirubin levels and diabetic retinopathy: the Hisayama Study. Ophthalmology 118, 1423–1428 PubMed

Yoshino S., Hamasaki S., Ishida S., Kataoka T., Yoshikawa A., Oketani N., Saihara K., Okui H., Shinsato T., Ichiki H., Kubozono T., Kuwahata S., Fujita S., Kanda D., Nakazaki M., Miyata M., Tei C. (2011). Relationship between bilirubin concentration, coronary endothelial function, and inflammatory stress in overweight patients. J. Atheroscler. Thromb. 18, 403–41210.5551/jat.6346 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Association of Low Serum Bilirubin Concentrations and Promoter Variations in the UGT1A1 and HMOX1 Genes with Type 2 Diabetes Mellitus in the Czech Population

. 2023 Jun 25 ; 24 (13) : . [epub] 20230625

Serum Bilirubin and Markers of Oxidative Stress and Inflammation in a Healthy Population and in Patients with Various Forms of Atherosclerosis

. 2022 Oct 27 ; 11 (11) : . [epub] 20221027

Association of Serum Bilirubin and Functional Variants of Heme Oxygenase 1 and Bilirubin UDP-Glucuronosyl Transferase Genes in Czech Adult Patients with Non-Alcoholic Fatty Liver Disease

. 2021 Dec 15 ; 10 (12) : . [epub] 20211215

Mitochondrial Function, Fatty Acid Metabolism, and Body Composition in the Hyperbilirubinemic Gunn Rat

. 2021 ; 12 () : 586715. [epub] 20210308

The Extent of Intracellular Accumulation of Bilirubin Determines Its Anti- or Pro-Oxidant Effect

. 2020 Oct 30 ; 21 (21) : . [epub] 20201030

Inhibition of Lipid Accumulation in Skeletal Muscle and Liver Cells: A Protective Mechanism of Bilirubin Against Diabetes Mellitus Type 2

. 2020 ; 11 () : 636533. [epub] 20210125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...