The Extent of Intracellular Accumulation of Bilirubin Determines Its Anti- or Pro-Oxidant Effect
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NW18-07-00342
Czech Ministry of Health
RVO-VFN64165/2020
Czech Ministry of Health
PubMed
33143041
PubMed Central
PMC7663266
DOI
10.3390/ijms21218101
PII: ijms21218101
Knihovny.cz E-zdroje
- Klíčová slova
- ROS, antioxidant, bilirubin, bilirubin neurotoxicity, redox state,
- MeSH
- antioxidancia farmakologie MeSH
- bilirubin farmakologie MeSH
- hepatocelulární karcinom farmakoterapie metabolismus patologie MeSH
- hyperbilirubinemie patofyziologie MeSH
- lidé MeSH
- nádory jater farmakoterapie metabolismus patologie MeSH
- neuroblastom farmakoterapie metabolismus patologie MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- oxidancia farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- bilirubin MeSH
- oxidancia MeSH
- reaktivní formy kyslíku MeSH
BACKGROUND: Severe hyperbilirubinemia can cause permanent neurological damage in particular in neonates, whereas mildly elevated serum bilirubin protects from various oxidative stress-mediated diseases. The present work aimed to establish the intracellular unconjugated bilirubin concentrations (iUCB) thresholds differentiating between anti- and pro-oxidant effects. METHODS: Hepatic (HepG2), heart endothelial (H5V), kidney tubular (HK2) and neuronal (SH-SY5Y) cell lines were exposed to increasing concentration of bilirubin. iUCB, cytotoxicity, intracellular reactive oxygen species (ROS) concentrations, and antioxidant capacity (50% efficacy concentration (EC50)) were determined. RESULTS: Exposure of SH-SY5Y to UCB concentration > 3.6 µM (iUCB of 25 ng/mg) and >15 µM in H5V and HK2 cells (iUCB of 40 ng/mg) increased intracellular ROS production (p < 0.05). EC50 of the antioxidant activity was 21 µM (iUCB between 5.4 and 21 ng/mg) in HepG2 cells, 0.68 µM (iUCB between 3.3 and 7.5 ng/mg) in SH-SY5Y cells, 2.4 µM (iUCB between 3 and 6.7 ng/mg) in HK2 cells, and 4 µM (iUCB between 4.7 and 7.5 ng/mg) in H5V cells. CONCLUSIONS: In all the cell lines studied, iUCB of around 7 ng/mg protein had antioxidant activities, while iUCB > 25 ng/mg protein resulted in a prooxidant and cytotoxic effects. UCB metabolism was found to be cell-specific resulting in different iUCB.
AOP MH2F Team LAAS CNRS 7 avenue de l'Europe 31400 Toulouse France
Department of Life Sciences University of Trieste 34127 Trieste Italy
Italian Liver Foundation Bldg Q AREA Science Park Basovizza SS14 Km 163 5 34149 Trieste Italy
Zobrazit více v PubMed
Ahlfors C.E., Wennberg R.P., Ostrow J.D., Tiribelli C. Unbound (free) bilirubin: Improving the paradigm for evaluating neonatal jaundice. Clin. Chem. 2009;55:1288–1299. doi: 10.1373/clinchem.2008.121269. PubMed DOI
Zucker S.D., Goessling W., Hoppin A.G. Unconjugated bilirubin exhibits spontaneous diffusion through model lipid bilayers and native hepatocyte membranes. J. Biol. Chem. 1999;274:10852–10862. doi: 10.1074/jbc.274.16.10852. PubMed DOI
Zelenka J., Lenícek M., Muchová L., Jirsa M., Kudla M., Balaz P., Zadinová M., Ostrow J.D., Wong R.J., Vítek L. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2008;867:37–42. doi: 10.1016/j.jchromb.2008.03.005. PubMed DOI
Kapitulnik J., Gonzalez F.J. Marked endogenous activation of the CYP1A1 and CYP1A2 genes in the congenitally jaundiced Gunn rat. Mol. Pharmacol. 1993;43:722–725. PubMed
De Matteis F., Lord G.A., Kee Lim C., Pons N. Bilirubin degradation by uncoupled cytochrome P450. Comparison with a chemical oxidation system and characterization of the products by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. RCM. 2006;20:1209–1217. doi: 10.1002/rcm.2431. PubMed DOI
Coles B.F., Kadlubar F.F. Human Alpha Class Glutathione S-Transferases: Genetic Polymorphism, Expression, and Susceptibility to Disease. In: Sies H., Packer L., editors. Methods in Enzymology. Volume 401. Academic Press; Cambridge, MA, USA: 2005. pp. 9–42. Gluthione Transferases and Gamma-Glutamyl Transpeptidases. PubMed
Nakamura A., Nakajima M., Yamanaka H., Fujiwara R., Yokoi T. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab. Dispos. Biol. Fate Chem. 2008;36:1461–1464. doi: 10.1124/dmd.108.021428. PubMed DOI
Schinkel A.H. The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 1997;8:161–170. doi: 10.1006/scbi.1997.0068. PubMed DOI
Falcão A.S., Bellarosa C., Fernandes A., Brito M.A., Silva R.F.M., Tiribelli C., Brites D. Role of multidrug resistance-associated protein 1 expression in the in vitro susceptibility of rat nerve cell to unconjugated bilirubin. Neuroscience. 2007;144:878–888. doi: 10.1016/j.neuroscience.2006.10.026. PubMed DOI
Corich L., Aranda A., Carrassa L., Bellarosa C., Ostrow J.D., Tiribelli C. The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1. Biochem. J. 2009;417:305–312. doi: 10.1042/BJ20080918. PubMed DOI
Rigato I., Pascolo L., Fernetti C., Ostrow J.D., Tiribelli C. The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem. J. 2004;383:335–341. doi: 10.1042/BJ20040599. PubMed DOI PMC
Calligaris S., Cekic D., Roca-Burgos L., Gerin F., Mazzone G., Ostrow J.D., Tiribelli C. Multidrug resistance associated protein 1 protects against bilirubin-induced cytotoxicity. FEBS Lett. 2006;580:1355–1359. doi: 10.1016/j.febslet.2006.01.056. PubMed DOI
Scheffer G.L., Kool M., de Haas M., de Vree J.M.L., Pijnenborg A.C.L.M., Bosman D.K., Elferink R.P.J.O., van der Valk P., Borst P., Scheper R.J. Tissue distribution and induction of human multidrug resistant protein 3. Lab. Investig. J. Tech. Methods Pathol. 2002;82:193–201. doi: 10.1038/labinvest.3780411. PubMed DOI
Bellarosa C., Bortolussi G., Tiribelli C. The role of ABC transporters in protecting cells from bilirubin toxicity. Curr. Pharm. Des. 2009;15:2884–2892. doi: 10.2174/138161209789058246. PubMed DOI
Watchko J.F., Tiribelli C. Bilirubin-induced neurologic damage. N. Engl. J. Med. 2014;370:979. doi: 10.1056/NEJMc1315973. PubMed DOI
Bosma P.J., Chowdhury J.R., Bakker C., Gantla S., de Boer A., Oostra B.A., Lindhout D., Tytgat G.N., Jansen P.L., Oude Elferink R.P. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med. 1995;333:1171–1175. doi: 10.1056/NEJM199511023331802. PubMed DOI
Vítek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012;3:55. doi: 10.3389/fphar.2012.00055. PubMed DOI PMC
Baranano D.E., Rao M., Ferris C.D., Snyder S.H. Biliverdin reductase: A major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA. 2002;99:16093–16098. doi: 10.1073/pnas.252626999. PubMed DOI PMC
Gopinathan V., Miller N.J., Milner A.D., Rice-Evans C.A. Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 1994;349:197–200. doi: 10.1016/0014-5793(94)00666-0. PubMed DOI
Farrera J.A., Jaumà A., Ribó J.M., Peiré M.A., Parellada P.P., Roques-Choua S., Bienvenue E., Seta P. The antioxidant role of bile pigments evaluated by chemical tests. Bioorg. Med. Chem. 1994;2:181–185. doi: 10.1016/S0968-0896(00)82013-1. PubMed DOI
Doré S., Snyder S.H. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann. N. Y. Acad. Sci. 1999;890:167–172. doi: 10.1111/j.1749-6632.1999.tb07991.x. PubMed DOI
Liu Y., Zhu B., Wang X., Luo L., Li P., Paty D.W., Cynader M.S. Bilirubin as a potent antioxidant suppresses experimental autoimmune encephalomyelitis: Implications for the role of oxidative stress in the development of multiple sclerosis. J. Neuroimmunol. 2003;139:27–35. doi: 10.1016/S0165-5728(03)00132-2. PubMed DOI
Gazzin S., Strazielle N., Tiribelli C., Ghersi-Egea J.-F. Transport and Metabolism at Blood–Brain Interfaces and in Neural Cells: Relevance to Bilirubin-Induced Encephalopathy. Front. Pharmacol. 2012;3 doi: 10.3389/fphar.2012.00089. PubMed DOI PMC
Derick S., Gironde C., Perio P., Reybier K., Nepveu F., Jauneau A., Furger C. LUCS (Light-Up Cell System), a universal high throughput assay for homeostasis evaluation in live cells. Sci. Rep. 2017;7:18069. doi: 10.1038/s41598-017-18211-2. PubMed DOI PMC
Gironde C., Rigal M., Dufour C., Furger C. AOP1, a New Live Cell Assay for the Direct and Quantitative Measure of Intracellular Antioxidant Effects. Antioxid. Basel Switz. 2020;9:471. doi: 10.3390/antiox9060471. PubMed DOI PMC
Vitek L., Bellarosa C., Tiribelli C. Induction of Mild Hyperbilirubinemia: Hype or Real Therapeutic Opportunity? Clin. Pharmacol. Ther. 2018 doi: 10.1002/cpt.1341. PubMed DOI
Mirabelli P., Coppola L., Salvatore M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers. 2019;11:1098. doi: 10.3390/cancers11081098. PubMed DOI PMC
Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab. Dispos. Biol. Fate Chem. 2014;42:561–565. doi: 10.1124/dmd.113.055772. PubMed DOI
Iusuf D., van de Steeg E., Schinkel A.H. Hepatocyte hopping of OATP1B substrates contributes to efficient hepatic detoxification. Clin. Pharmacol. Ther. 2012;92:559–562. doi: 10.1038/clpt.2012.143. PubMed DOI
Abu-Bakar A., Arthur D.M., Wikman A.S., Rahnasto M., Juvonen R.O., Vepsäläinen J., Raunio H., Ng J.C., Lang M.A. Metabolism of bilirubin by human cytochrome P450 2A6. Toxicol. Appl. Pharmacol. 2012;261:50–58. doi: 10.1016/j.taap.2012.03.010. PubMed DOI
Brites D. Bilirubin injury to neurons and glial cells: New players, novel targets, and newer insights. Semin. Perinatol. 2011;35:114–120. doi: 10.1053/j.semperi.2011.02.004. PubMed DOI
Jenkinson S.E., Chung G.W., van Loon E., Bakar N.S., Dalzell A.M., Brown C.D.A. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Arch. 2012;464:601–611. doi: 10.1007/s00424-012-1163-2. PubMed DOI
Ngai K.-C., Yeung C.-Y., Leung C.-S. Difference in susceptibilities of different cell lines to bilirubin damage. J. Paediatr. Child Health. 2000;36:51–55. doi: 10.1046/j.1440-1754.2000.00436.x. PubMed DOI
Ollinger R., Bilban M., Erat A., Froio A., McDaid J., Tyagi S., Csizmadia E., Graça-Souza A.V., Liloia A., Soares M.P., et al. Bilirubin: A natural inhibitor of vascular smooth muscle cell proliferation. Circulation. 2005;112:1030–1039. doi: 10.1161/CIRCULATIONAHA.104.528802. PubMed DOI
Chan G.K.Y., Kleinheinz T.L., Peterson D., Moffat J.G. A Simple High-Content Cell Cycle Assay Reveals Frequent Discrepancies between Cell Number and ATP and MTS Proliferation Assays. PLoS ONE. 2013;8:e63583. doi: 10.1371/journal.pone.0063583. PubMed DOI PMC
Tell G., Gustincich S. Redox state, oxidative stress, and molecular mechanisms of protective and toxic effects of bilirubin on cells. Curr. Pharm. Des. 2009;15:2908–2914. doi: 10.2174/138161209789058174. PubMed DOI
Brito M.A., Lima S., Fernandes A., Falcão A.S., Silva R.F.M., Butterfield D.A., Brites D. Bilirubin injury to neurons: Contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology. 2008;29:259–269. doi: 10.1016/j.neuro.2007.11.002. PubMed DOI
Kumar S., Guha M., Choubey V., Maity P., Srivastava K., Puri S.K., Bandyopadhyay U. Bilirubin inhibits Plasmodium falciparum growth through the generation of reactive oxygen species. Free Radic. Biol. Med. 2008;44:602–613. doi: 10.1016/j.freeradbiomed.2007.10.057. PubMed DOI
Oakes G.H., Bend J.R. Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1c1c7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway. J. Biochem. Mol. Toxicol. 2005;19:244–255. doi: 10.1002/jbt.20086. PubMed DOI
Hopkins P.N., Wu L.L., Hunt S.C., James B.C., Vincent G.M., Williams R.R. Higher Serum Bilirubin Is Associated With Decreased Risk for Early Familial Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 1996;16:250–255. doi: 10.1161/01.ATV.16.2.250. PubMed DOI
Oh S.W., Lee E.S., Kim S., Na K.Y., Chae D.W., Kim S., Chin H.J. Bilirubin attenuates the renal tubular injury by inhibition of oxidative stress and apoptosis. BMC Nephrol. 2013;14:105. doi: 10.1186/1471-2369-14-105. PubMed DOI PMC
Fujii M., Inoguchi T., Sasaki S., Maeda Y., Zheng J., Kobayashi K., Takayanagi R. Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int. 2010;78:905–919. doi: 10.1038/ki.2010.265. PubMed DOI
Marilena G. New physiological importance of two classic residual products: Carbon monoxide and bilirubin. Biochem. Mol. Med. 1997;61:136–142. doi: 10.1006/bmme.1997.2610. PubMed DOI
Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–1046. doi: 10.1126/science.3029864. PubMed DOI
Stocker R., Glazer A.N., Ames B.N. Antioxidant activity of albumin-bound bilirubin. Proc. Natl. Acad. Sci. USA. 1987;84:5918–5922. doi: 10.1073/pnas.84.16.5918. PubMed DOI PMC
Wu T.-W., Carey D., Wu J., Sugiyama H. The cytoprotective effects of bilirubin and biliverdin on rat hepatocytes and human erythrocytes and the impact of albumin. Biochem. Cell Biol. 1991;69:828–834. doi: 10.1139/o91-123. PubMed DOI
Giraudi P.J., Bellarosa C., Coda-Zabetta C.D., Peruzzo P., Tiribelli C. Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS ONE. 2011;6:e29078. doi: 10.1371/journal.pone.0029078. PubMed DOI PMC
He L., He T., Farrar S., Ji L., Liu T., Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017;44:532–553. doi: 10.1159/000485089. PubMed DOI
McDonagh A.F., Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem. J. 1972;129:797–800. doi: 10.1042/bj1290797. PubMed DOI PMC
Jašprová J., Dvořák A., Vecka M., Leníček M., Lacina O., Valášková P., Zapadlo M., Plavka R., Klán P., Vítek L. A novel accurate LC-MS/MS method for quantitative determination of Z-lumirubin. Sci. Rep. 2020;10:4411. doi: 10.1038/s41598-020-61280-z. PubMed DOI PMC
Nieminen A.-L., Gores G.J., Bond J.M., Imberti R., Herman B., Lemasters J.J. A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol. Appl. Pharmacol. 1992;115:147–155. doi: 10.1016/0041-008X(92)90317-L. PubMed DOI
Dengler W.A., Schulte J., Berger D.P., Mertelsmann R., Fiebig H.H. Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs. 1995;6:522–532. doi: 10.1097/00001813-199508000-00005. PubMed DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Ewing J.F., Janero D.R. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal. Biochem. 1995;232:243–248. doi: 10.1006/abio.1995.0014. PubMed DOI