Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25647416
PubMed Central
PMC4346886
DOI
10.3390/ijms16023163
PII: ijms16023163
Knihovny.cz E-zdroje
- MeSH
- chlorid draselný farmakologie MeSH
- konformace nukleové kyseliny MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- plazmidy chemie metabolismus MeSH
- soli farmakologie MeSH
- vazba proteinů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid draselný MeSH
- nádorový supresorový protein p53 MeSH
- soli MeSH
A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.
Zobrazit více v PubMed
Meek D.W. Tumour suppression by p53: A role for the DNA damage response? Nat. Rev. Cancer. 2009;9:714–723. PubMed
Menendez D., Inga A., Resnick M.A. The expanding universe of p53 targets. Nat. Rev. Cancer. 2009;9:724–737. PubMed
El-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992;1:45–49. PubMed
Weinberg R.L., Veprintsev D.B., Fersht A.R. Cooperative binding of tetrameric p53 to DNA. J. Mol. Biol. 2004;341:1145–1159. PubMed
Brazdova M., Navratilova L., Tichy V., Nemcova K., Lexa M., Hrstka R., Pecinka P., Adamik M., Vojtesek B., Palecek E., et al. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS One. 2013;8:e59567. PubMed PMC
Joerger A.C., Fersht A.R. Structure–function–rescue: The diverse nature of common p53 cancer mutants. Oncogene. 2007;26:2226–2242. PubMed
Brazdova M., Palecek J., Cherny D.I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T.M., Palecek E. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30:4966–4974. PubMed PMC
Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B. Investigations of the supercoil-selective DNA binding of wild type p53 suggest a novel mechanism for controlling p53 function. Eur. J. Biochem. 2004;271:3865–3876. PubMed
Palecek E., Vlk D., Stankova V., Brazda V., Vojtesek B., Hupp T.R., Schaper A., Jovin T.M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15:2201–2209. PubMed
Pivonkova H., Sebest P., Pecinka P., Ticha O., Nemcova K., Brazdova M., Jagelska E.B., Brazda V., Fojta M. Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs. Biochem. Biophys. Res. Commun. 2010;393:894–899. PubMed
Coufal J., Jagelska E.B., Liao J.C.C., Brazda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. PubMed
Jagelska E.B., Brazda V., Pecinka P., Palecek E., Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem. J. 2008;412:57–63. PubMed
Jagelska E.B., Pivonkova H., Fojta M., Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem. Biophys. Res. Commun. 2010;391:1409–1414. PubMed
Pivonkova H., Brazdova M., Kasparkova J., Brabec V., Fojta M. Recognition of cisplatin-damaged DNA by p53 protein: Critical role of the p53 C-terminal domain. Biochem. Biophys. Res. Commun. 2006;339:477–484. PubMed
Wetzel C.C., Berberich S.J. P53 binds to cisplatin-damaged DNA. Biochim. Biophys. Acta. 2001;1517:392–397. PubMed
Brazda V., Jagelska E.B., Fojta M., Palecek E. Searching for target sequences by p53 protein is influenced by DNA length. Biochem. Biophys. Res. Commun. 2006;341:470–477. PubMed
Leith J.S., Tafvizi A., Huang F., Uspal W.E., Doyle P.S., Fersht A.R., Mirny L.A., van Oijen A.M. Sequence-dependent sliding kinetics of p53. Proc. Natl. Acad. Sci. USA. 2012;109:16552–16557. PubMed PMC
McKinney K., Mattia M., Gottifredi V., Prives C. p53 Linear diffusion along DNA requires its C-terminus. Mol. Cell. 2004;16:413–424. PubMed
Tafvizi A., Huang F., Fersht A.R., Mirny L.A., van Oijen A.M. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA. 2011;108:563–568. PubMed PMC
Tafvizi A., Huang F., Leith J.S., Fersht A.R., Mirny L.A., van Oijen A.M. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 2008;95:L1–L3. PubMed PMC
Terakawa T., Kenzaki H., Takada S. P53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains. J. Am. Chem. Soc. 2012;134:14555–14562. PubMed
Butcher S., Hainaut P., Milner J. Increased salt concentration reversibly destabilizes p53 quaternary structure and sequence-specific DNA-binding. Biochem. J. 1994;298:513–516. PubMed PMC
Cobb A.M., Jackson B.R., Kim E., Bond P.L., Bowater R.P. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Anal. Biochem. 2013;442:51–61. PubMed
Arbely E., Natan E., Brandt T., Allen M.D., Veprintsev D.B., Robinson C.V., Chin J.W., Joerger A.C., Fersht A.R. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc. Natl. Acad. Sci. USA. 2011;108:8251–8256. PubMed PMC
Nemcova K., Sebest P., Havran L., Orsag P., Fojta M., Pivonkova H. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode. Anal. Bioanal. Chem. 2014;406:5843–5852. PubMed
Nemcova K., Havran L., Sebest P., Brazdova M., Pivonkova H., Fojta M. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. Anal. Chim. Acta. 2010;668:166–170. PubMed
Palecek E., Brazdova M., Brazda V., Palecek J., Billova S., Subramaniam V., Jovin T.M. Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem. 2001;268:573–581. PubMed
Kim E., Albrechtsen N., Deppert W. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53. Oncogene. 1997;15:857–869. PubMed
Palecek E., Brazda V., Jagelska E., Pecinka P., Karlovska L., Brazdova M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene. 2004;23:2119–2127. PubMed
Gohler T., Jager S., Warnecke G., Yasuda H., Kim E., Deppert W. Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res. 2005;33:1087–1100. PubMed PMC
Bates A.D., Maxwell A. DNA Topology. IRL Press at Oxford University Press; Oxford, UK: 1993.
Bowater R.P. Encyclopedia of Life Sciences. John Wiley and Sons, Ltd.; Hoboken, NJ, USA: 2005. Supercoiled DNA: Structure. DOI
Gowers D.M., Wilson G.G., Halford S.E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl. Acad. Sci. USA. 2005;102:15883–15888. PubMed PMC
Vacek J., Cahova K., Palecek E., Bullard D.R., Lavesa-Curto M., Bowater R.P., Fojta M. Label-free electrochemical monitoring of DNA ligase activity. Anal. Chem. 2008;80:7609–7613. PubMed
Bellamy S.R., Milsom S.E., Scott D.J., Daniels L.E., Wilson G.G., Halford S.E. Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI. J. Mol. Biol. 2005;384:641–653. PubMed
Petty T.J., Emamzadah S., Costantino L., Petkova I., Stavridi E.S., Saven J.G., Vauthey E., Halazonetis T.D. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 2011;30:2167–2176. PubMed PMC
Bhattacherjee A., Levy Y. Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res. 2014;42:12404–12414. PubMed PMC
Fojta M., Palecek E. Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage. Anal. Chim. Acta. 1997;342:1–12.
Bowater R., Aboul-Ela F., Lilley D.M. Two-dimensional gel electrophoresis of circular DNA topoisomers. Methods Enzymol. 1992;212:105–120. PubMed
Vojtesek B., Bartek J., Midgley C.A., Lane D.P. An immunochemical analysis of the human nuclear phosphoprotein p53: New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992;151:237–244. PubMed