Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism

. 2015 Jan 30 ; 16 (2) : 3163-77. [epub] 20150130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25647416

A study of the effects of salt conditions on the association and dissociation of wild type p53 with different ~3 kbp long plasmid DNA substrates (supercoiled, relaxed circular and linear, containing or lacking a specific p53 binding site, p53CON) using immunoprecipitation at magnetic beads is presented. Salt concentrations above 200 mM strongly affected association of the p53 protein to any plasmid DNA substrate. Strikingly different behavior was observed when dissociation of pre-formed p53-DNA complexes in increased salt concentrations was studied. While contribution from the p53CON to the stability of the p53-DNA complexes was detected between 100 and 170 mM KCl, p53 complexes with circular DNAs (but not linear) exhibited considerable resistance towards salt treatment for KCl concentrations as high as 2 M provided that the p53 basic C-terminal DNA binding site (CTDBS) was available for DNA binding. On the contrary, when the CTDBS was blocked by antibody used for immunoprecipitation, all p53-DNA complexes were completely dissociated from the p53 protein in KCl concentrations≥200 mM under the same conditions. These observations suggest: (a) different ways for association and dissociation of the p53-DNA complexes in the presence of the CTDBS; and (b) a critical role for a sliding mechanism, mediated by the C-terminal domain, in the dissociation process.

Zobrazit více v PubMed

Meek D.W. Tumour suppression by p53: A role for the DNA damage response? Nat. Rev. Cancer. 2009;9:714–723. PubMed

Menendez D., Inga A., Resnick M.A. The expanding universe of p53 targets. Nat. Rev. Cancer. 2009;9:724–737. PubMed

El-Deiry W.S., Kern S.E., Pietenpol J.A., Kinzler K.W., Vogelstein B. Definition of a consensus binding site for p53. Nat. Genet. 1992;1:45–49. PubMed

Weinberg R.L., Veprintsev D.B., Fersht A.R. Cooperative binding of tetrameric p53 to DNA. J. Mol. Biol. 2004;341:1145–1159. PubMed

Brazdova M., Navratilova L., Tichy V., Nemcova K., Lexa M., Hrstka R., Pecinka P., Adamik M., Vojtesek B., Palecek E., et al. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS One. 2013;8:e59567. PubMed PMC

Joerger A.C., Fersht A.R. Structure–function–rescue: The diverse nature of common p53 cancer mutants. Oncogene. 2007;26:2226–2242. PubMed

Brazdova M., Palecek J., Cherny D.I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T.M., Palecek E. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30:4966–4974. PubMed PMC

Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B. Investigations of the supercoil-selective DNA binding of wild type p53 suggest a novel mechanism for controlling p53 function. Eur. J. Biochem. 2004;271:3865–3876. PubMed

Palecek E., Vlk D., Stankova V., Brazda V., Vojtesek B., Hupp T.R., Schaper A., Jovin T.M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15:2201–2209. PubMed

Pivonkova H., Sebest P., Pecinka P., Ticha O., Nemcova K., Brazdova M., Jagelska E.B., Brazda V., Fojta M. Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs. Biochem. Biophys. Res. Commun. 2010;393:894–899. PubMed

Coufal J., Jagelska E.B., Liao J.C.C., Brazda V. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. PubMed

Jagelska E.B., Brazda V., Pecinka P., Palecek E., Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem. J. 2008;412:57–63. PubMed

Jagelska E.B., Pivonkova H., Fojta M., Brazda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem. Biophys. Res. Commun. 2010;391:1409–1414. PubMed

Pivonkova H., Brazdova M., Kasparkova J., Brabec V., Fojta M. Recognition of cisplatin-damaged DNA by p53 protein: Critical role of the p53 C-terminal domain. Biochem. Biophys. Res. Commun. 2006;339:477–484. PubMed

Wetzel C.C., Berberich S.J. P53 binds to cisplatin-damaged DNA. Biochim. Biophys. Acta. 2001;1517:392–397. PubMed

Brazda V., Jagelska E.B., Fojta M., Palecek E. Searching for target sequences by p53 protein is influenced by DNA length. Biochem. Biophys. Res. Commun. 2006;341:470–477. PubMed

Leith J.S., Tafvizi A., Huang F., Uspal W.E., Doyle P.S., Fersht A.R., Mirny L.A., van Oijen A.M. Sequence-dependent sliding kinetics of p53. Proc. Natl. Acad. Sci. USA. 2012;109:16552–16557. PubMed PMC

McKinney K., Mattia M., Gottifredi V., Prives C. p53 Linear diffusion along DNA requires its C-terminus. Mol. Cell. 2004;16:413–424. PubMed

Tafvizi A., Huang F., Fersht A.R., Mirny L.A., van Oijen A.M. A single-molecule characterization of p53 search on DNA. Proc. Natl. Acad. Sci. USA. 2011;108:563–568. PubMed PMC

Tafvizi A., Huang F., Leith J.S., Fersht A.R., Mirny L.A., van Oijen A.M. Tumor suppressor p53 slides on DNA with low friction and high stability. Biophys. J. 2008;95:L1–L3. PubMed PMC

Terakawa T., Kenzaki H., Takada S. P53 searches on DNA by rotation-uncoupled sliding at C-terminal tails and restricted hopping of core domains. J. Am. Chem. Soc. 2012;134:14555–14562. PubMed

Butcher S., Hainaut P., Milner J. Increased salt concentration reversibly destabilizes p53 quaternary structure and sequence-specific DNA-binding. Biochem. J. 1994;298:513–516. PubMed PMC

Cobb A.M., Jackson B.R., Kim E., Bond P.L., Bowater R.P. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Anal. Biochem. 2013;442:51–61. PubMed

Arbely E., Natan E., Brandt T., Allen M.D., Veprintsev D.B., Robinson C.V., Chin J.W., Joerger A.C., Fersht A.R. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc. Natl. Acad. Sci. USA. 2011;108:8251–8256. PubMed PMC

Nemcova K., Sebest P., Havran L., Orsag P., Fojta M., Pivonkova H. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode. Anal. Bioanal. Chem. 2014;406:5843–5852. PubMed

Nemcova K., Havran L., Sebest P., Brazdova M., Pivonkova H., Fojta M. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads. Anal. Chim. Acta. 2010;668:166–170. PubMed

Palecek E., Brazdova M., Brazda V., Palecek J., Billova S., Subramaniam V., Jovin T.M. Binding of p53 and its core domain to supercoiled DNA. Eur. J. Biochem. 2001;268:573–581. PubMed

Kim E., Albrechtsen N., Deppert W. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53. Oncogene. 1997;15:857–869. PubMed

Palecek E., Brazda V., Jagelska E., Pecinka P., Karlovska L., Brazdova M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene. 2004;23:2119–2127. PubMed

Gohler T., Jager S., Warnecke G., Yasuda H., Kim E., Deppert W. Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res. 2005;33:1087–1100. PubMed PMC

Bates A.D., Maxwell A. DNA Topology. IRL Press at Oxford University Press; Oxford, UK: 1993.

Bowater R.P. Encyclopedia of Life Sciences. John Wiley and Sons, Ltd.; Hoboken, NJ, USA: 2005. Supercoiled DNA: Structure. DOI

Gowers D.M., Wilson G.G., Halford S.E. Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA. Proc. Natl. Acad. Sci. USA. 2005;102:15883–15888. PubMed PMC

Vacek J., Cahova K., Palecek E., Bullard D.R., Lavesa-Curto M., Bowater R.P., Fojta M. Label-free electrochemical monitoring of DNA ligase activity. Anal. Chem. 2008;80:7609–7613. PubMed

Bellamy S.R., Milsom S.E., Scott D.J., Daniels L.E., Wilson G.G., Halford S.E. Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI. J. Mol. Biol. 2005;384:641–653. PubMed

Petty T.J., Emamzadah S., Costantino L., Petkova I., Stavridi E.S., Saven J.G., Vauthey E., Halazonetis T.D. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. EMBO J. 2011;30:2167–2176. PubMed PMC

Bhattacherjee A., Levy Y. Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res. 2014;42:12404–12414. PubMed PMC

Fojta M., Palecek E. Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage. Anal. Chim. Acta. 1997;342:1–12.

Bowater R., Aboul-Ela F., Lilley D.M. Two-dimensional gel electrophoresis of circular DNA topoisomers. Methods Enzymol. 1992;212:105–120. PubMed

Vojtesek B., Bartek J., Midgley C.A., Lane D.P. An immunochemical analysis of the human nuclear phosphoprotein p53: New monoclonal antibodies and epitope mapping using recombinant p53. J. Immunol. Methods. 1992;151:237–244. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

p53 Specifically Binds Triplex DNA In Vitro and in Cells

. 2016 ; 11 (12) : e0167439. [epub] 20161201

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace