p53 Specifically Binds Triplex DNA In Vitro and in Cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27907175
PubMed Central
PMC5131957
DOI
10.1371/journal.pone.0167439
PII: PONE-D-16-29521
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce genetika MeSH
- DNA vazebné proteiny chemie genetika MeSH
- DNA chemie genetika MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie genetika MeSH
- nukleotidové motivy genetika MeSH
- plazmidy genetika MeSH
- promotorové oblasti (genetika) MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- sekvenční delece genetika MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA MeSH
- nádorový supresorový protein p53 MeSH
- TP53 protein, human MeSH Prohlížeč
- triplex DNA MeSH Prohlížeč
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
Department of Information Technologies Faculty of Informatics Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70(4):523–526. PubMed
el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992;1(1):45–49. 10.1038/ng0492-45 PubMed DOI
Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, et al. p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res. 1995;23(3):362–369. PubMed PMC
Dudenhoffer C, Kurth M, Janus F, Deppert W, Wiesmuller L. Dissociation of the recombination control and the sequence-specific transactivation function of P53. Oncogene. 1999;18(42):5773–5784. 10.1038/sj.onc.1202964 PubMed DOI
Szak ST, Pietenpol JA. High affinity insertion/deletion lesion binding by p53. Evidence for a role of the p53 central domain. The Journal of biological chemistry. 1999;274(6):3904–3909. PubMed
Jett SD, Cherny DI, Subramaniam V, Jovin TM. Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA. Journal of molecular biology. 2000;299(3):585–592. 10.1006/jmbi.2000.3759 PubMed DOI
Zotchev SB, Protopopova M, Selivanova G. p53 C-terminal interaction with DNA ends and gaps has opposing effect on specific DNA binding by the core. Nucleic Acids Res. 2000;28(20):4005–4012. PubMed PMC
Fojta M, Pivonkova H, Brazdova M, Kovarova L, Palecek E, Pospisilova S, et al. Recognition of DNA modified by antitumor cisplatin by "latent" and "active" protein p53. Biochem Pharmacol. 2003;65(8):1305–1316. PubMed
Stros M, Muselikova-Polanska E, Pospisilova S, Strauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry. 2004;43(22):7215–7225. 10.1021/bi049928k PubMed DOI
Brazdova M, Palecek J, Cherny DI, Billova S, Fojta M, Pecinka P, et al. Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res. 2002;30(22):4966–4974. PubMed PMC
Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, et al. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15(18):2201–2209. 10.1038/sj.onc.1201398 PubMed DOI
Kim E, Deppert W. The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol. 2003;81(3):141–150. 10.1139/o03-046 PubMed DOI
Adamik M, Kejnovská I, Bazantova P, Petr M, Renčiuk D, Vorlíčková M, et al. p53 binds human telomeric G-quadruplex in vitro. Biochimie. 2016. PubMed
Felsenfeld G, Rich A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta. 1957;26(3):457–468. PubMed
Frank-Kamenetskii MD, Mirkin SM. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. 10.1146/annurev.bi.64.070195.000433 PubMed DOI
Mirkin SM, Frank-Kamenetskii MD. H-DNA and related structures. Annu Rev Biophys Biomol Struct. 1994;23:541–576. 10.1146/annurev.bb.23.060194.002545 PubMed DOI
Schroth GP, Ho PS. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA. Nucleic Acids Res. 1995;23(11):1977–1983. PubMed PMC
Bacolla A, Collins JR, Gold B, Chuzhanova N, Yi M, Stephens RM, et al. Long homopurine*homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Res. 2006;34(9):2663–2675. 10.1093/nar/gkl354 PubMed DOI PMC
Lexa M, Martinek T, Brazdova M. Uneven Distribution of Potential Triplex Sequences in the Human Genome In Silico Study using the R/Bioconductor Package Triplex. Bioinformatics 2014: Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms. 2014:80–88.
Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplex-Inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics (Oxford, England). 2013;29(15):1895–1897. PubMed PMC
Vasquez KM, Glazer PM. Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys. 2002;35(1):89–107. PubMed
Lacroix L, Lacoste J, Reddoch JF, Mergny JL, Levy DD, Seidman MM, et al. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting. Biochemistry. 1999;38(6):1893–1901. 10.1021/bi982290q PubMed DOI
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA biology. 2011;8(3):427–439. 10.4161/rna.8.3.14999 PubMed DOI PMC
Guieysse AL, Praseuth D, Helene C. Identification of a triplex DNA-binding protein from human cells. Journal of molecular biology. 1997;267(2):289–298. 10.1006/jmbi.1997.0884 PubMed DOI
Kiyama R, Camerini-Otero RD. A triplex DNA-binding protein from human cells: purification and characterization. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(23):10450–10454. PubMed PMC
Kusic J, Tomic B, Divac A, Kojic S. Human initiation protein Orc4 prefers triple stranded DNA. Molecular biology reports. 2010;37(5):2317–2322. 10.1007/s11033-009-9735-8 PubMed DOI
Wang G, Carbajal S, Vijg J, DiGiovanni J, Vasquez KM. DNA structure-induced genomic instability in vivo. J Natl Cancer Inst. 2008;100(24):1815–1817. 10.1093/jnci/djn385 PubMed DOI PMC
Palecek E. Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol. 1991;26(2):151–226. 10.3109/10409239109081126 PubMed DOI
Brazdova M, Navratilova L, Tichy V, Nemcova K, Lexa M, Hrstka R, et al. Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS One. 2013;8(3):e59567 10.1371/journal.pone.0059567 PubMed DOI PMC
Palecek E, Brazda V, Jagelska E, Pecinka P, Karlovska L, Brazdova M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene. 2004;23(12):2119–2127. 10.1038/sj.onc.1207324 PubMed DOI
Gohler T, Reimann M, Cherny D, Walter K, Warnecke G, Kim E, et al. Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem. 2002;277(43):41192–41203. 10.1074/jbc.M202344200 PubMed DOI
Cobb AM, Jackson BR, Kim E, Bond PL, Bowater RP. Sequence-specific and DNA structure-dependent interactions of Escherichia coli MutS and human p53 with DNA. Anal Biochem. 2013;442(1):51–61. 10.1016/j.ab.2013.07.033 PubMed DOI
Walter K, Warnecke G, Bowater R, Deppert W, Kim E. tumor suppressor p53 binds with high affinity to CTG.CAG trinucleotide repeats and induces topological alterations in mismatched duplexes. The Journal of biological chemistry. 2005;280(52):42497–42507. 10.1074/jbc.M507038200 PubMed DOI
Palecek E, Brazdova M, Cernocka H, Vlk D, Brazda V, Vojtesek B. Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments. Oncogene. 1999;18(24):3617–3625. 10.1038/sj.onc.1202710 PubMed DOI
Fox KR. Long (dA)n.(dT)n tracts can form intramolecular triplexes under superhelical stress. Nucleic acids research. 1990;18(18):5387–5391. PubMed PMC
Rohaly G, Chemnitz J, Dehde S, Nunez AM, Heukeshoven J, Deppert W, et al. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell. 2005;122(1):21–32. 10.1016/j.cell.2005.04.032 PubMed DOI
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC Table Browser data retrieval tool. Nucleic acids research. 2004;32(Database issue):D493–496. 10.1093/nar/gkh103 PubMed DOI PMC
Tebaldi T, Zaccara S, Alessandrini F, Bisio A, Ciribilli Y, Inga A. Whole-genome cartography of p53 response elements ranked on transactivation potential. BMC genomics. 2015;16:464 10.1186/s12864-015-1643-9 PubMed DOI PMC
Lexa M, Martinek T, Burgetova I, Kopecek D, Brazdova M. A dynamic programming algorithm for identification of triplex-forming sequences. Bioinformatics (Oxford, England). 2011;27(18):2510–2517. PubMed
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research. 2015;43(Database issue):D447–452. 10.1093/nar/gku1003 PubMed DOI PMC
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic acids research. 2007;35(Web Server issue):W193–200. 10.1093/nar/gkm226 PubMed DOI PMC
Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA, et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife. 2014;3:e02200 10.7554/eLife.02200 PubMed DOI PMC
Fonseca NA, Marioni J, Brazma A. RNA-Seq gene profiling—a systematic empirical comparison. PLoS One. 2014;9(9):e107026 10.1371/journal.pone.0107026 PubMed DOI PMC
Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al. ArrayExpress update—simplifying data submissions. Nucleic acids research. 2015;43(Database issue):D1113–1116. 10.1093/nar/gku1057 PubMed DOI PMC
Kauffmann A, Rayner TF, Parkinson H, Kapushesky M, Lukk M, Brazma A, et al. Importing ArrayExpress datasets into R/Bioconductor. Bioinformatics (Oxford, England). 2009;25(16):2092–2094. PubMed PMC
van Noort SJ, van der Werf KO, Eker AP, Wyman C, de Grooth BG, van Hulst NF, et al. Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J. 1998;74(6):2840–2849. 10.1016/S0006-3495(98)77991-3 PubMed DOI PMC
Pecinka P, Huertas D, Azorin F, Palecek E. Intramolecular TAT triplex in (dA)58.(dT)58. influence of ions. J Biomol Struct Dyn. 1995;13(1):29–46. 10.1080/07391102.1995.10508819 PubMed DOI
Buzek J, Kuderova A, Pexa T, Stankova V, Lauerova L, Palecek E. Monoclonal antibody against DNA adducts with osmium structural probes. J Biomol Struct Dyn. 1999;17(1):41–50. 10.1080/07391102.1999.10508339 PubMed DOI
Nejedly K, Chladkova J, Kypr J. Photochemical probing of the B—a conformational transition in a linearized pUC19 DNA and its polylinker region. Biophys Chem. 2007;125(1):237–246. 10.1016/j.bpc.2006.08.007 PubMed DOI
Sebest P, Brazdova M, Fojta M, Pivonkova H. Differential salt-induced dissociation of the p53 protein complexes with circular and linear plasmid DNA substrates suggest involvement of a sliding mechanism. Int J Mol Sci. 2015;16(2):3163–3177. 10.3390/ijms16023163 PubMed DOI PMC
Kudoh T, Kimura J, Lu ZG, Miki Y, Yoshida K. D4S234E, a novel p53-responsive gene, induces apoptosis in response to DNA damage. Exp Cell Res. 2010;316(17):2849–2858. 10.1016/j.yexcr.2010.06.025 PubMed DOI
Sauer M, Bretz AC, Beinoraviciute-Kellner R, Beitzinger M, Burek C, Rosenwald A, et al. C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. Nucleic acids research. 2008;36(6):1900–1912. 10.1093/nar/gkn044 PubMed DOI PMC
Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A, et al. Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer. 2013;13:552 10.1186/1471-2407-13-552 PubMed DOI PMC
Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS computational biology. 2014;10(7):e1003731 10.1371/journal.pcbi.1003731 PubMed DOI PMC
Kracikova M, Akiri G, George A, Sachidanandam R, Aaronson SA. A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell death and differentiation. 2013;20(4):576–588. 10.1038/cdd.2012.155 PubMed DOI PMC
Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M, et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell death and differentiation. 2012;19(12):1992–2002. 10.1038/cdd.2012.89 PubMed DOI PMC
Wang B, Niu D, Lam TH, Xiao Z, Ren EC. Mapping the p53 transcriptome universe using p53 natural polymorphs. Cell death and differentiation. 2014;21(4):521–532. 10.1038/cdd.2013.132 PubMed DOI PMC
Sanchez Y, Segura V, Marin-Bejar O, Athie A, Marchese FP, Gonzalez J, et al. Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nat Commun. 2014;5:5812 10.1038/ncomms6812 PubMed DOI PMC
Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, et al. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011;39(Database issue):D383–391. 10.1093/nar/gkq1170 PubMed DOI PMC
Lopez Castel A, Cleary JD, Pearson CE. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol. 2010;11(3):165–170. 10.1038/nrm2854 PubMed DOI
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci. 2010;67(1):43–62. 10.1007/s00018-009-0131-2 PubMed DOI PMC
Goni JR, Vaquerizas JM, Dopazo J, Orozco M. Exploring the reasons for the large density of triplex-forming oligonucleotide target sequences in the human regulatory regions. BMC Genomics. 2006;7:63 10.1186/1471-2164-7-63 PubMed DOI PMC
Dudenhoffer C, Rohaly G, Will K, Deppert W, Wiesmuller L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol. 1998;18(9):5332–5342. PubMed PMC
Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 1995;81(7):1013–1020. PubMed
Quante T, Otto B, Brazdova M, Kejnovska I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11(17):3290–3303. 10.4161/cc.21646 PubMed DOI PMC
Subramanian D, Griffith JD. Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry. 2005;44(7):2536–2544. 10.1021/bi048700u PubMed DOI
Brazdova M, Quante T, Togel L, Walter K, Loscher C, Tichy V, et al. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res. 2009;37(5):1486–1400. 10.1093/nar/gkn1085 PubMed DOI PMC
Petr M, Helma R, Polaskova A, Krejci A, Dvorakova Z, Kejnovska I, et al. Wild-type p53 binds to MYC promoter G-quadruplex. Biosci Rep. 2016;36(5). PubMed PMC
Kim H, Kim K, Choi J, Heo K, Baek HJ, Roeder RG, et al. p53 requires an intact C-terminal domain for DNA binding and transactivation. Journal of molecular biology. 2012;415(5):843–854. 10.1016/j.jmb.2011.12.001 PubMed DOI PMC
Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 2015;57(6):1034–1046. 10.1016/j.molcel.2015.02.015 PubMed DOI PMC
Laptenko O, Tong DR, Manfredi J, Prives C. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Trends Biochem Sci. 2016. PubMed PMC
Friedler A, Veprintsev DB, Freund SM, von Glos KI, Fersht AR. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure. 2005;13(4):629–636. 10.1016/j.str.2005.01.020 PubMed DOI
McKinney K, Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol. 2002;22(19):6797–6808. 10.1128/MCB.22.19.6797-6808.2002 PubMed DOI PMC
McKinney K, Mattia M, Gottifredi V, Prives C. p53 linear diffusion along DNA requires its C terminus. Mol Cell. 2004;16(3):413–424. 10.1016/j.molcel.2004.09.032 PubMed DOI
Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 2013;27(9):1016–1031. 10.1101/gad.212282.112 PubMed DOI PMC
Tutton S, Azzam GA, Stong N, Vladimirova O, Wiedmer A, Monteith JA, et al. Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. Embo J. 2016;35(2):193–207. 10.15252/embj.201490880 PubMed DOI PMC
Kaushik Tiwari M, Adaku N, Peart N, Rogers FA. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells. Nucleic acids research. 2016;44(16):7742–7754. 10.1093/nar/gkw515 PubMed DOI PMC
Hampp S, Kiessling T, Buechle K, Mansilla SF, Thomale J, Rall M, et al. DNA damage tolerance pathway involving DNA polymerase iota and the tumor suppressor p53 regulates DNA replication fork progression. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(30):E4311–4319. 10.1073/pnas.1605828113 PubMed DOI PMC
Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(21):9455–9459. PubMed PMC
Bacolla A, Wang G, Vasquez KM. New Perspectives on DNA and RNA Triplexes As Effectors of Biological Activity. PLoS Genet. 2015;11(12):e1005696 10.1371/journal.pgen.1005696 PubMed DOI PMC
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog. 2009;48(4):286–298. 10.1002/mc.20508 PubMed DOI PMC
Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010;17(6):901–911. 10.1038/cdd.2010.35 PubMed DOI
Menendez D, Nguyen TA, Freudenberg JM, Mathew VJ, Anderson CW, Jothi R, et al. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic acids research. 2013;41(15):7286–7301. 10.1093/nar/gkt504 PubMed DOI PMC
Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17(3):349–366. 10.15252/embr.201540505 PubMed DOI PMC
Younger ST, Kenzelmann-Broz D, Jung H, Attardi LD, Rinn JL. Integrative genomic analysis reveals widespread enhancer regulation by p53 in response to DNA damage. Nucleic acids research. 2015;43(9):4447–4462. 10.1093/nar/gkv284 PubMed DOI PMC
Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell. 2013;49(3):524–535. 10.1016/j.molcel.2012.11.021 PubMed DOI
Cherny DI, Brazdova M, Palecek J, Palecek E, Jovin TM. Sequestering of p53 into DNA-protein filaments revealed by electron microscopy. Biophys Chem. 2005;114(2–3):261–271. 10.1016/j.bpc.2004.12.042 PubMed DOI
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure
Recognition of Local DNA Structures by p53 Protein