Pangenome reconstruction in rats enhances genotype-phenotype mapping and variant discovery

. 2025 Feb 21 ; 28 (2) : 111835. [epub] 20250123

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40034122
Odkazy

PubMed 40034122
PubMed Central PMC11875200
DOI 10.1016/j.isci.2025.111835
PII: S2589-0042(25)00095-1
Knihovny.cz E-zdroje

The HXB/BXH family of recombinant inbred rat strains is a unique genetic resource that has been extensively phenotyped over 25 years, resulting in a vast dataset of quantitative molecular and physiological phenotypes. We built a pangenome graph from 10x Genomics Linked-Read data for 31 recombinant inbred rats to study genetic variation and association mapping. The pangenome includes 0.2Gb of sequence that is not present the reference mRatBN7.2, confirming the capture of substantial additional variation. We validated variants in challenging regions, including complex structural variants resolving into multiple haplotypes. Phenome-wide association analysis of validated SNPs uncovered variants associated with glucose/insulin levels and hippocampal gene expression. We propose an interaction between Pirl1l1, chromogranin expression, TNF-α levels, and insulin regulation. This study demonstrates the utility of linked-read pangenomes for comprehensive variant detection and mapping phenotypic diversity in a widely used rat genetic reference panel.

Před aktualizací

PubMed

Zobrazit více v PubMed

Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Sodergren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–521. doi: 10.1038/nature02426. PubMed DOI

Printz M.P., Jirout M., Jaworski R., Alemayehu A., Kren V. Invited Review: HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J. Appl. Physiol. 2003;94:2510–2522. doi: 10.1152/japplphysiol.00064.2003. PubMed DOI

Pravenec M., Churchill P.C., Churchill M.C., Viklicky O., Kazdova L., Aitman T.J., Petretto E., Hubner N., Wallace C.A., Zimdahl H., et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 2008;40:952–954. doi: 10.1038/ng.164. PubMed DOI

Adriaens M.E., Lodder E.M., Moreno-Moral A., Šilhavý J., Heinig M., Glinge C., Belterman C., Wolswinkel R., Petretto E., Pravenec M., et al. Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. J. Am. Heart Assoc. 2018;7 doi: 10.1161/JAHA.118.009243. PubMed DOI PMC

Bielavská E., Kr V., Pravenec M. Genome Scanning of the HXB/BXH Sets of Recombinant Inbred Strains of the Rat for Quantitative Trait Loci Associated with Conditioned Taste Aversion. Behav. Genet. 2002;32:51–56. PubMed

Lusk R., Saba L.M., Vanderlinden L.A., Zidek V., Silhavy J., Pravenec M., Hoffman P.L., Tabakoff B. Unsupervised, Statistically Based Systems Biology Approach for Unraveling the Genetics of Complex Traits: A Demonstration with Ethanol Metabolism. Alcohol Clin. Exp. Res. 2018;42:1177–1191. doi: 10.1111/acer.13763. PubMed DOI PMC

Eizenga J.M., Novak A.M., Sibbesen J.A., Heumos S., Ghaffaari A., Hickey G., Chang X., Seaman J.D., Rounthwaite R., Ebler J., et al. Pangenome Graphs. Annu. Rev. Genom. Hum. Genet. 2020;21:139–162. doi: 10.1146/annurev-genom-120219-080406. PubMed DOI PMC

Liao W.-W., Asri M., Ebler J., Doerr D., Haukness M., Hickey G., Lu S., Lucas J.K., Monlong J., Abel H.J., et al. A draft human pangenome reference. Nature. 2023;617:312–324. doi: 10.1038/s41586-023-05896-x. PubMed DOI PMC

Guarracino A., Buonaiuto S., de Lima L.G., Potapova T., Rhie A., Koren S., Rubinstein B., Fischer C., Human Pangenome Reference Consortium, Gerton J.L., et al. Recombination between heterologous human acrocentric chromosomes. Nature. 2023;617:335–343. doi: 10.1038/s41586-023-05976-y. PubMed DOI PMC

De Jong T.V., Pan Y., Rastas P., Munro D., Tutaj M., Akil H., Benner C., Chen D., Chitre A.S., Chow W., et al. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. Cell Genom. 2024;4 doi: 10.1016/j.xgen.2024.100527. PubMed DOI PMC

Huang N., Li H. compleasm: a faster and more accurate reimplementation of BUSCO. Bioinformatics. 2023;39 doi: 10.1093/bioinformatics/btad595. PubMed DOI PMC

Yun T., Li H., Chang P.-C., Lin M.F., Carroll A., McLean C.Y. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Bioinformatics. 2021;36:5582–5589. doi: 10.1093/bioinformatics/btaa1081. PubMed DOI PMC

Garrison E., Guarracino A., Heumos S., Villani F., Bao Z., Tattini L., Hagmann J., Vorbrugg S., Marco-Sola S., Kubica C., et al. Building pangenome graphs. Nat. Methods. 2024;21:2008–2012. doi: 10.1038/s41592-024-02430-3. PubMed DOI

Garrison E., Sirén J., Novak A.M., Hickey G., Eizenga J.M., Dawson E.T., Jones W., Garg S., Markello C., Lin M.F., et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 2018;36:875–879. doi: 10.1038/nbt.4227. PubMed DOI PMC

Sirén J., Monlong J., Chang X., Novak A.M., Eizenga J.M., Markello C., Sibbesen J.A., Hickey G., Chang P.-C., Carroll A., et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science. 2021;374 doi: 10.1126/science.abg8871. PubMed DOI PMC

Mulligan M.K., Mozhui K., Prins P., Williams R.W. In: Systems Genetics Methods in Molecular Biology. Schughart K., Williams R.W., editors. Springer; 2017. GeneNetwork: A Toolbox for Systems Genetics; pp. 75–120. PubMed DOI PMC

Marissal-Arvy N., Heliès J.-M., Tridon C., Moisan M.-P., Mormède P. Quantitative Trait Loci Influencing Abdominal Fat Deposition and Functional Variability of the HPA Axis in the Rat. Horm. Metab. Res. 2014;46:635–643. doi: 10.1055/s-0034-1383574. PubMed DOI

Jirout M.L., Friese R.S., Mahapatra N.R., Mahata M., Taupenot L., Mahata S.K., Křen V., Zídek V., Fischer J., Maatz H., et al. Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat. Hum. Mol. Genet. 2010;19:2567–2580. doi: 10.1093/hmg/ddq135. PubMed DOI PMC

Zhang K., Mir S.A., Hightower C.M., Miramontes-Gonzalez J.P., Maihofer A.X., Chen Y., Mahata S.K., Nievergelt C.M., Schork N.J., Freedman B.I., et al. Molecular Mechanism for Hypertensive Renal Disease: Differential Regulation of Chromogranin A Expression at 3′-Untranslated Region Polymorphism C+87T by MicroRNA-107. J. Am. Soc. Nephrol. 2015;26:1816–1825. doi: 10.1681/ASN.2014060537. PubMed DOI PMC

Schafer M.K.-H., Mahata S.K., Stroth N., Eiden L.E., Weihe E. Cellular distribution of chromogranin A in excitatory, inhibitory, aminergic and peptidergic neurons of the rodent central nervous system. Regul. Pept. 2010;165:36–44. doi: 10.1016/j.regpep.2009.11.021. PubMed DOI PMC

Ciesielski-Treska J., Ulrich G., Taupenot L., Chasserot-Golaz S., Corti A., Aunis D., Bader M.-F. Chromogranin A Induces a Neurotoxic Phenotype in Brain Microglial Cells. J. Biol. Chem. 1998;273:14339–14346. doi: 10.1074/jbc.273.23.14339. PubMed DOI

Nagozir S., Shakouri Khomartash M., Parsania M., Vahidi M., Ghorbani M. Association between genetic variants in the CD209 gene and susceptibility to COVID-19 in Iranian population. Hum. Gene. 2023;38 doi: 10.1016/j.humgen.2023.201215. DOI

Morton C.O., Fliesser M., Dittrich M., Mueller T., Bauer R., Kneitz S., Hope W., Rogers T.R., Einsele H., Loeffler J. Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface. PLoS One. 2014;9 doi: 10.1371/journal.pone.0098279. PubMed DOI PMC

Sakuntabhai A., Turbpaiboon C., Casadémont I., Chuansumrit A., Lowhnoo T., Kajaste-Rudnitski A., Kalayanarooj S.M., Tangnararatchakit K., Tangthawornchaikul N., Vasanawathana S., et al. A variant in the CD209 promoter is associated with severity of dengue disease. Nat. Genet. 2005;37:507–513. doi: 10.1038/ng1550. PubMed DOI PMC

Vannberg F.O., Chapman S.J., Khor C.C., Tosh K., Floyd S., Jackson-Sillah D., Crampin A., Sichali L., Bah B., Gustafson P., et al. CD209 Genetic Polymorphism and Tuberculosis Disease. PLoS One. 2008;3 doi: 10.1371/journal.pone.0001388. PubMed DOI PMC

Ivancevic A., Chuong E.B. Transposable elements teach T cells new tricks. Proc. Natl. Acad. Sci. USA. 2020;117:9145–9147. doi: 10.1073/pnas.2004493117. PubMed DOI PMC

Bosco A., McKenna K.L., Firth M.J., Sly P.D., Holt P.G. A Network Modeling Approach to Analysis of the Th2 Memory Responses Underlying Human Atopic Disease. J. Immunol. 2009;182:6011–6021. doi: 10.4049/jimmunol.0804125. PubMed DOI PMC

Herazo-Maya J.D., Noth I., Duncan S.R., Kim S., Ma S.-F., Tseng G.C., Feingold E., Juan-Guardela B.M., Richards T.J., Lussier Y., et al. Peripheral Blood Mononuclear Cell Gene Expression Profiles Predict Poor Outcome in Idiopathic Pulmonary Fibrosis. Sci. Transl. Med. 2013;5:205ra136. doi: 10.1126/scitranslmed.3005964. PubMed DOI PMC

Zeng D., Wu J., Luo H., Li Y., Xiao J., Peng J., Ye Z., Zhou R., Yu Y., Wang G., et al. Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J. Immunother. Cancer. 2021;9 doi: 10.1136/jitc-2021-002467. PubMed DOI PMC

Chen J.X., Xu X., Zhang S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life. 2019;71:956–968. doi: 10.1002/iub.2033. PubMed DOI

Wood H. MCEMP1 — a new prognostic and diagnostic biomarker for stroke? Nat. Rev. Neurol. 2016;12:127. doi: 10.1038/nrneurol.2016.17. PubMed DOI

Choi Y.J., Yoo J.-S., Jung K., Rice L., Kim D., Zlojutro V., Frimel M., Madden E., Choi U.Y., Foo S.-S., et al. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation. Nat. Commun. 2023;14:2045. doi: 10.1038/s41467-023-37873-3. PubMed DOI PMC

Pattee J., Vanderlinden L.A., Mahaffey S., Hoffman P., Tabakoff B., Saba L.M. Evaluation and characterization of expression quantitative trait analysis methods in the Hybrid Rat Diversity Panel. Front. Genet. 2022;13 doi: 10.3389/fgene.2022.947423. PubMed DOI PMC

Weisenfeld N.I., Kumar V., Shah P., Church D.M., Jaffe D.B. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–767. doi: 10.1101/gr.214874.116. PubMed DOI PMC

A. Guarracino,E. Garrison 2021 wfmash: a pangenome-scale aligner,https://github.com/waveygang/wfmash.

Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., Li H. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Tan A., Abecasis G.R., Kang H.M. Unified representation of genetic variants. Bioinformatics. 2015;31:2202–2204. doi: 10.1093/bioinformatics/btv112. PubMed DOI PMC

Cleary J.G., Braithwaite R., Gaastra K., Hilbush B.S., Inglis S., Irvine S.A., Jackson A., Littin R., Rathod M., Ware D., et al. Comparing Variant Call Files for Performance Benchmarking of Next-Generation Sequencing Variant Calling Pipelines. bioRxiv. 2015 doi: 10.1101/023754. Preprint at. DOI

Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2009;Chapter 4:4.10.1–4.10.14. doi: 10.1002/0471250953.bi0410s25. PubMed DOI

Martin F.J., Amode M.R., Aneja A., Austine-Orimoloye O., Azov A.G., Barnes I., Becker A., Bennett R., Berry A., Bhai J., et al. Ensembl 2023. Nucleic Acids Res. 2023;51:D933–D941. doi: 10.1093/nar/gkac958. PubMed DOI PMC

Wheeler T.J., Clements J., Eddy S.R., Hubley R., Jones T.A., Jurka J., Smit A.F.A., Finn R.D. Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 2013;41:D70–D82. doi: 10.1093/nar/gks1265. PubMed DOI PMC

Guarracino A., Heumos S., Nahnsen S., Prins P., Garrison E. ODGI: understanding pangenome graphs. Bioinforma. Oxf. Engl. 2022;38:3319–3326. doi: 10.1093/bioinformatics/btac308. PubMed DOI PMC

Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. doi: 10.1093/bioinformatics/btv383. PubMed DOI PMC

Garrison E., Kronenberg Z.N., Dawson E.T., Pedersen B.S., Prins P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 2022;18 doi: 10.1371/journal.pcbi.1009123. PubMed DOI PMC

English A.C., Menon V.K., Gibbs R.A., Metcalf G.A., Sedlazeck F.J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 2022;23:271. doi: 10.1186/s13059-022-02840-6. PubMed DOI PMC

Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118 ; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Arends,D (2017)) BXDtools.https://github.com/DannyArends/BXDtools/.

Smith J.R., Hayman G.T., Wang S.-J., Laulederkind S.J.F., Hoffman M.J., Kaldunski M.L., Tutaj M., Thota J., Nalabolu H.S., Ellanki S.L.R., et al. The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res. 2020;48:D731–D742. doi: 10.1093/nar/gkz1041. PubMed DOI PMC

Gel B., Serra E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics. 2017;33:3088–3090. doi: 10.1093/bioinformatics/btx346. PubMed DOI PMC

Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50:D20–D26. doi: 10.1093/nar/gkab1112. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Thorvaldsdottir H., Robinson J.T., Mesirov J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings Bioinf. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...